

17 St. Andrew Street Proposed Mixed-Use Development

Urban Transportation Considerations
City of Toronto

Prepared For: The Impressions Group

September 30, 2019

TABLE OF CONTENTS

1.0	INTRODUCTION					
	1.1	The Site Today	7			
	1.2	Project Description	7			
		1.2.1 Site Access	7			
		1.2.2 Vehicle and Bicycle Parking	7			
		1.2.3 Loading	7			
2.0	SCO	PE OF TRANSPORTATION REVIEW	10			
3.0	STU	DY FINDINGS	11			
4.0	TRA	NSPORTATION CONTEXT	15			
	4.1	Area Road Network	15			
		4.1.1 Major Arterials	15			
		4.1.2 Local Roads	15			
		4.1.3 Laneways	15			
	4.2	Transit Facilities	16			
		4.2.1 Existing Transit Facilities	16			
	4.3	Cycling and Pedestrians Network	17			
		4.3.1 Existing Area Cycling and Pedestrian Network	17			
5.0	PAR	KING	22			
	5.1	Vehicle Parking	22			
		5.1.1 Zoning By-law 569-2013 Minimum Parking Requirements	22			
		5.1.2 Proposed Vehicular Parking Supply	23			
	5.2	Bicycle Parking	25			
		5.2.1 Zoning By-Law 569-2013 Bicycle Zone 1 Parking Requirements	25			
		5.2.2 Proposed Bicycle Parking Supply	25			
6.0	LOA	DING	26			
	6.1	Zoning By-Law 569-2013 Loading Requirements	26			
	6.2	Proposed Loading Supply	26			
7.0	MOE	BILITY CHOICE TRAVEL PLAN	27			
	7.1	Implementation and ORganizational Framework	27			
		7.1.1 Implementation	27			
	7.2	Organizational Framework	27			
	7.3	Mobility Plan Strategies	28			
	7.4	Facilitation of Reduced Car Ownership and Usage	28			

	7.5		destrian Access and Walkability	
		POSSIBLE M	EASURES	29
	7.6	_	and Facilitate Bicycle Use	
			EASURES	
	7.7	•	Fransit Use	
			EASURES	
	7.8		n, Communication, and Promotion	
			EASURES	
	7.9	Summary of	Key Measures	32
3.0	MUL	I-MODAL TE	RAVEL DEMAND FORECASTING	33
	8.1		/olumes	
	8.2		ımes	
		=10.1/01.1114		
9.0			ES FORECAST	
	9.1 9.2		sis Scenarios and Design Periods ffic	
	9.2	0	ground Traffic	
	9.0		or Traffic Growth	
			round Development Growth	
	9.4	9		
	0.1		ng Site Traffic Volumes	
			rip Generation	
			to Green Standard Version 3	
			stribution and Assignment	
	9.5	•	Traffic	
10.0			TION ANALYSIS	
	10.1	0.	y	
	10.2	,	Intersections	
			lized Intersection Analysis	
		10.2.2 Unsign	nalized Intersection Analysis	50

LIST OF TABLES

Table 1	Summary of TTC Routes in the Site Vicinity	16
Table 2	Zoning By-law 569-2013 PA-3 Minimum Parking Requirements	22
Table 3	Zoning By-law 569-2013 Bicycle Zone 1 Parking Requirements	25
Table 4	Zoning By-law 569-2013 Loading Requirements	26
Table 5	Proposed TDM Measures – Base TDM Measures	32
Table 6	Proposed TDM Measures – Additional Potential Building Specific Measures	32
Table 7	Multi-Modal Site Trip Generation	33
Table 8	Total Peak Hour Pedestrian Volumes (Existing Conditions)	34
Table 9	Total Peak Hour Cycling Volumes (Existing Conditions)	35
Table 10	Existing Turning Movement Count Summary	36
Table 11	Area Background Developments	37
Table 12	Existing Site Traffic Volumes	41
Table 13	Site Trip Generation	41
Table 14	Trip Generation Reduction Summary	42
Table 15	Residential Trip Distribution	43
Table 16	Signalized Intersections - Traffic Operations Analysis	49
Table 17	Unsignalized Intersections - Traffic Operations Analysis	50

LIST OF FIGURES

Figure 1:	Site Location	8
Figure 2:	Site Context	g
Figure 3:	Area Road Classification Map	18
Figure 4:	Area Transit Service	19
Figure 5:	Area Bicycle Network	20
Figure 6:	Area Pedestrians Facilities	21
Figure 7:	Existing Lane Configurations	38
Figure 8:	Existing Traffic Volumes	39
Figure 9:	Future Background Traffic Volumes	40
Figure 10:	Existing Site Traffic Volumes (To be Removed)	44
Figure 11:	New Site Traffic Volumes	45
Figure 12:	Net New Site Traffic Volumes	46
Figure 13:	Future Total Traffic Volumes	47

TABLE OF APPENDICES

APPENDIX A:	Reduced-scaled Architectural Drawings
APPENDIX B:	Vehicle Manoeuvring Diagrams (VMDs)
APPENDIX C:	Turning Movement Counts (TMCs)
APPENDIX D:	Signal Timing Plans (STPs)
APPENDIX E:	Synchro Traffic Analysis Outputs

1.0 INTRODUCTION

BA Group is retained by The Impressions Group to provide transportation consulting services with respect to the proposed mixed-use residential development municipally known as 17 St. Andrew Street in the City of Toronto.

1.1 THE SITE TODAY

The 17 St. Andrew Street property (herein also referred to as the 'site') is situated approximately mid-block along St. Andrew Street between Spadina Avenue and Kensington Avenue. The site is located directly adjacent to a north-south public laneway and currently consist of a 2-storey building fronting onto St. Andrew Street as well as private surface parking lot consisting of approximately 15 spaces.

The existing building comprises of at-grade retail uses with second floor residential uses. Parking and loading activity is provided within the surface lot adjacent to the existing building.

Figure 1 and Figure 2 illustrate the site location and site context, respectively.

1.2 PROJECT DESCRIPTION

The development program proposes a 5-storey (plus mechanical penthouse) student residence with ancillary retail uses located at-grade. A total of 77 residential dwelling units (93 beds) and ancillary retail uses with a gross floor area (GFA) of approximately 172 m² are proposed.

1.2.1 Site Access

No formal access is proposed on site. Loading access to the site is proposed via an existing north-south laneway located along St. Andrew Street (approximately 90 m west of Spadina Avenue) along the western site boundary of the site.

1.2.2 Vehicle and Bicycle Parking

No vehicular parking spaces are proposed on the site. A public parking garage operated by Toronto Parking Authority (TPA) is available directly north of the site along St. Andrew Street, providing a total of 425 parking spaces, and is municipally known as 20 St. Andrews Street.

A total of 156 bicycle parking spaces are provided on site to accommodate the needs of the site.

1.2.3 Loading

One (1) Type 'G' loading spaces is proposed on site to accommodate the garbage and moving needs of the site. The proposed loading space can be accessed via the north-south laneway along St. Andrew Street.

Reduced-scaled architectural drawings of the proposed development are provided in **Appendix A**.

SITE LOCATION

SITE CONTEXT

2.0 SCOPE OF TRANSPORTATION REVIEW

BA Group has undertaken a review of the implications, from a transportation perspective of the proposed development. This review has been undertaken on a comprehensive basis and includes an assessment of the following aspects of the proposal and its transportation context:

- the transportation context of the site and its environs;
- the existing weekday street peak hour traffic activity levels on the area street system surrounding the site;
- the existing operational characteristics of the key area intersections in the site vicinity during the morning and afternoon weekday peak hour periods;
- traffic generation characteristics and travel patterns related to the proposed development during the weekday morning and afternoon street peak hours;
- future weekday morning and afternoon peak hour traffic volumes in the site vicinity considering new traffic from the proposed development, other area development as well as general traffic growth;
- future traffic operations at the public street intersections in the site vicinity and the site driveways during the weekday street peak hours;
- traffic volume changes on the area local and collector street system in the site area resulting from a redevelopment of the property;
- Transportation Demand Management (TDM) measures related to the site to encourage nonautomobile oriented travel;
- multi-modal transportation review, including non-automobile trip generation characteristics related to the proposed development; and
- a review of the functional aspects of the proposed site access, loading and parking facilities.

3.0 STUDY FINDINGS

CONTEXT

- 1. The site is located within the south-west quadrant of the Spadina Avenue and St. Andrew Street signalized intersection. The site location allows for convenient access to streetcars operating along Spadina Avenue and Dundas Street West, with an option to transfer to other transit routes such as Line 1 Yonge-University and Line 2 Bloor-Danforth subway. This proximity to the subway system provides high transit accessibility for the site and will serve to reduce the reliance on auto trips for students of the proposed development.
- 2. The site is located within the Kensington Market neighbourhood in the downtown core of the City. There are many retail stores in the site vicinity. This proximity is supportive of a non-auto trip making by students of the proposed development and will serve to reduce traffic generation potential of the site.

SITE ACCESS CONSIDERATIONS

3. No formal vehicular aces into the site is proposed. Pedestrian and cycling access to the site is proposed along St. Andrew Street. Loading access is proposed via the existing north-south laneway adjacent to the site (approximately 90 m west of Spadina Avenue).

TRAFFIC GROWTH

- 4. A comprehensive series of traffic growth allowances have been made within the analyses undertaken as part of this study to account for traffic generated by new area development.
- 5. Specific allowances were made for traffic generated by other developments in the area that have either been approved and are not yet built or are being actively reviewed by the City.
- 6. A review of the historical peak hour traffic volumes indicates that there has been no sustained growth in peak hour traffic activity over recent years. Notwithstanding this, an annual corridor growth rate of 0.5% was conservatively applied to Spadina Avenue for the weekday morning and weekday peak hour periods.

SITE TRAFFIC

- 7. The existing site was surveyed in September 2018 and it was observed that approximately 2 and 18 two-way trips currently access the site during the weekday morning and afternoon peak hour peaks, respectively.
- 8. The proposed development is anticipated to generate in the order of 0 and 2 two-way vehicular trips during the weekday morning and afternoon peak traffic hours, respectively.
- 9. A total of approximately -2 and -16 net-new trips are anticipated as part of the proposed development programme.

TRAFFIC OPERATIONS ANALYSIS AREA SIGNALIZED INTERSECTIONS

- 10. The key signalized intersection of Spadina Avenue / St. Andrew Street operates acceptably under existing traffic conditions with overall intersection volume to capacity (v/c) ratios of 0.30 or less during the morning and afternoon peak hours.
- 11. Acceptable traffic operations will be maintained in the future at the signalized intersection with addition of site traffic and new traffic from other area development proposal. Overall intersection v/c ratios will be 0.31 or less during the morning and afternoon peak hours.
- 12. Site related impacts on the operation of the area signalized intersection are negligible. New site related traffic activity can be acceptably and appropriately accommodated at the area signalized intersections.

TRAFFIC OPERATIONS ANALYSIS AREA UNSIGNALIZED INTERSECTIONS

- 13. Acceptable levels of service are provided today at the key area unsignalized (STOP controlled) intersections. Turning movement and approach levels of service provided under existing conditions are in the LOS A to D range.
- 14. The area unsignalized intersections will continue to operate acceptably under future background conditions with the addition of other area development traffic activity. These intersections will continue to operate in a similar manner to existing conditions with turning movement and approach levels of service remaining within the LOS A to D range.
- 15. Under future total conditions with the addition of new site related traffic generated by the site, area unsignalized intersection will continue to operate similar to future background conditions within the LOS A to D range.
- 16. New site related traffic can, based upon the above, be acceptably and appropriately accommodated at the area unsignalized STOP controlled intersections. Traffic operations and levels of service will be similar to existing conditions.

SITE DRIVEWAY TRAFFIC OPERATIONS

- 17. The proposed site (loading) access along the existing north-south laneway at St. Andrew Street will operate acceptably (LOS A) during both the morning and afternoon peak hours with build-out of the proposed building during the morning and afternoon peak hour periods.
- 18. Site traffic activity can be acceptably accommodated at the laneway.

SITE PLAN CONSIDERATIONS

Vehicle Parking

- 19. Zoning By-law 569-2013 Policy Area 1 minimum parking requirements for the proposed student residence considering residential uses as prescribed under the bylaw would yield a total of 43 vehicle parking spaces.
- 20. As part of the proposal, no vehicular parking spaces are proposed within the site. Parking is proposed to be accommodated at the public parking lot operated by Toronto Parking Authority (TPA) directly north of the site across St. Andrew Street, providing a total of 425 parking spaces.
- 21. Based on full day surveys conducted during the weekday (Friday) and weekend (Saturday and Sunday) peak demand periods, a surplus of supply of approximately 75 or more spaces were observed.

Bicycle Parking

- 22. Under Zoning By-law 569-2013 Bicycle Zone 1, a total of 79 bicycle parking spaces are required considering residential uses as prescribed under the bylaw, including 71 long-term and 8 short-term spaces.
- 23. The proposal includes 156 bicycle parking spaces and meets (and exceeds) the minimum requirements prescribed under Zoning By-law 569-2013.

Loading

- 24. Under Zoning By-law 569-2013, one Type 'G' loading space is required for the site considering residential uses as prescribed under the bylaw.
- 25. One Type 'G' loading space is proposed to accommodate garbage collection, delivery, and site related service activity. The proposed loading facility will appropriately accommodate the needs of the development.
- 26. The arrangement of the loading area and related access facility has been designed to accommodate the manoeuvering needs of City of Toronto garbage and recycling collection vehicles as well as facilitating 'forward in / forward out' access to and from the site for City of Toronto garbage collection.

Transit

27. The is well served by high level public transit, approximately 250 metres from the nearest stop along the 505 Dundas and 510 Spadina streetcar routes and approximately 1 km from the St. Patrick subway station on the Yonge-University-Spadina subway line (Line 1). This high level of transit access will provide residents of the development without a car can readily reach a wide range of destinations.

Pedestrians Facilities

28. Continuous sidewalks are provided on both sides along St. Andrew Street, Spadina Avenue and Dundas Street West as well as several signalized crossing opportunities.

Cycling Facilities

- 29. Bicycle sharrows are provided along Spadina Avenue and extend from Fort York Boulevard in the south to College Street in the north. Spadina Avenue intersects with several marked cycling lanes including southbound connections to the rest of the City.
- 30. The proposed development proposes a total of 156 bicycle parking spaces which satisfies (and exceeds) the minimum bicycle parking requirements of the by-law and will accommodate the needs of the site.

SUMMARY AND CONCLUSIONS

- 31. New site related traffic volumes can be acceptably and appropriately accommodated on the area street network.
- 32. Site related traffic impacts are small and will not noticeably change operating conditions at area signalized and unsignalized intersections during the peak hours.
- 33. The development plan will acceptably accommodate the vehicular, transit, pedestrian and cycling needs of the proposed development.

4.0 TRANSPORTATION CONTEXT

4.1 AREA ROAD NETWORK

The area road network in the immediate site vicinity is illustrated in **Figure 3**. A brief description of roads in the vicinity of the site is provided as follows.

4.1.1 Major Arterials

SPADINA AVENUE

Spadina is a north-south oriented 4-lane roadway divided by a dedicated streetcar route and extends from Queens Quay West in the south to beyond Bloor Street in the north. In the study area, northbound and southbound left turn and u-turn lanes are provided at signalized intersections and lay-by parking is provided along the outside lanes in both directions. Transit stops are located in the centre right-of-way at Baldwin Street and Dundas Street West within the site vicinity.

On-street bicycle sharrows are also provided along Spadina Avenue in both the northbound and southbound directions.

4.1.2 Local Roads

ST. ANDREW AVENUE

St. Andrew Avenue is a local road that runs east-west from Spadina Avenue to Kensington Avenue. It has a basic two-lane cross-section. Parking is prohibited on both sides of the street.

KENSIGNTON AVENUE

Kensington Avenue is a one-way local road west of the site and runs south from Baldwin Street to Dundas Street West. Kensington Avenue has a single travel lane with on-street parking provided along the western curb.

4.1.3 Laneways

GLEN BAILLE PLACE

Glen Baille Place is an east-west laneway that connects to Spadina Avenue south of the site. At Spadina Avenue, Glen Baille Place operates as a right-in / right-out only intersection.

NORTH-SOUTH LANEWAY

A north-south lane is located adjacent to the western boundary of the site and connects to St. Andrew Street. At St. Andrew Street, the north-south lane operates as a full moves intersection.

4.2 TRANSIT FACILITIES

4.2.1 Existing Transit Facilities

The site is well located with respect to existing transit services and is located approximately 250 metres from the nearest stop along the 505 Dundas and 510 Spadina streetcar routes and approximately 1 km from the St. Patrick subway station on the Yonge-University-Spadina subway line (Line 1).

510 Spadina operates primarily north-south in a dedicated right-of-way connecting to Spadina Station at the north end and Union Station at the south end with its main branch service. Two services are provided during non-summer weekday peak periods, the Spadina Station to Union Station main branch and the Spadina Station to King Street short-turn branch.

505 Dundas operates primarily east-west in mixed traffic connecting to Dundas West Station at the west end and Broadview Station at the east end. Service is also provided to St. Patrick Station and Dundas Station. Service along this route is provided 24 hours a day, 7 days a week.

The Yonge-University-Spadina subway line (Line 1) operates generally in a north-south direction along the Yonge Street and University Avenue corridors in downtown Toronto. The Yonge-University-Spadina line (Line 1) runs in a 'U-shaped' routing providing connections along Yonge Street from Finch Station in the north to Union Station in downtown Toronto, and then northward again to the Downsview Station along University Avenue, Spadina Avenue and the Allen Road corridors. The Yonge-University-Spadina line (Line 1) connects with the Bloor-Danforth subway line (Line 2) at three different locations including; Bloor-Yonge, St. George and Spadina subway stations.

A summary of the transit services operating on the area street system is provided in Table 1.

TABLE 1 SUMMARY OF TTC ROUTES IN THE SITE VICINITY

		Head	dway
Route	Direction	Weekday Morning Peak Period	Weekday Afternoon Peak Period
1 - University Subway Line	North / South	2.5 minutes	2.5 minutes
510 – Spadina streetcar	North / South	4 minutes	4.5 minutes
505 - Dundas streetcar	East / West	4 minutes	4 minutes

^{1.} Approximate headways from TTC August 4, 2019 to August 31, 2019 Service Summary

Existing and future transit facilities are illustrated in Figure 4.

4.3 CYCLING AND PEDESTRIANS NETWORK

4.3.1 Existing Area Cycling and Pedestrian Network

The site is well served by bicycle and pedestrian infrastructure.

Bicycle sharrows are provided along Spadina Avenue and extend from Fort York Boulevard in the south to College Street in the north. Spadina Avenue intersects with several marked cycling lanes including southbound connections to the rest of the City.

Continuous sidewalks are provided on both sides along St. Andrew Street, Spadina Avenue and Dundas Street West as well as several signalized crossing opportunities.

Figure 5 and Figure 6 illustrate the existing bicycle and pedestrian facilities.

AREA ROAD NETWORK

AREA TRANSIT CONTEXT

AREA CYCLING CONTEXT

AREA PEDESTRIAN CONTEXT

5.0 PARKING

The following discussion provides an overview of the parking requirements and provision incorporated into the development programme.

5.1 VEHICLE PARKING

5.1.1 Zoning By-law 569-2013 Minimum Parking Requirements

The City of Toronto Zoning By-law 569-2013 provides parking requirements for new developments within the City of Toronto. The site is subject to the Policy Area 1 (PA1) rates, as outlined in **Table 2**. Note that parking rates for an apartment building were used to determine the minimum parking requirements for the site.

TABLE 2 ZONING BY-LAW 569-2013 PA-3 MINIMUM PARKING REQUIREMENTS

Unit Type /	Units	Rate	Parking	Occupancy Rate			Pa	Parking Space		
Land Use ¹	/ GFA ¹	Nate	Space	AM	PM	EVE	AM	PM	EVE	
Dwelling Unit	in an Apa	rtment B	uilding (Ter	nant Requir	ement)					
Bachelor	46	0.30	13	100%	100%	100%	13	13	13	
1 Bedroom	16	0.50	8	100%	100%	100%	8	8	8	
2 Bedroom	14	0.80	11	100%	100%	100%	11	11	11	
3+ Bedroom	1	1.00	1	100%	100%	100%	1	1	1	
Subtotal	77	-	33	-	-	-	33	33	33	
Dwelling Unit	in an Apa	rtment B	uilding (Vis	itor Require	ement)					
All	77	0.10	7	10%	35%	100%	1	2	7	
Subtotal	77	-	7	-	-	-	1	2	7	
Non-Resident	tial	'			'	'				
Retail	172	1.00 /100 sm	1	20%	100%	100%	0	1	1	
Subtotal	172	-	1	-	-	-	0	1	1	
Site Total		•			•					
Residential	-	-	-	-	-	-	33	33	33	
Non- Residential	-	-	-	-	-	-	1	3	8	
Total	-	-	-	-	-	-	34	36	41	
			Minimum Re	equired Par	king Space			41		
Minimum Required Accessible Parking Space					Space		2			

Based on the foregoing, a total of 41 parking spaces are required for the development program, of which 33 spaces are for residential use and 9 spaces are for retail-use. The effective residential vehicular parking ratio is 0.43 spaces per unit.

The City of Toronto By-law 579-2017 requires a minimum of 2 accessible parking spaces, as summarized in **Table 2**.

5.1.2 Proposed Vehicular Parking Supply

The proposed development is contemplated to be a privately operated student residence that will accommodate students principally associated with universities and colleges in the downtown core of the City. Given the urban nature of the site location, easy access to vehicle-for-hire (i.e. Lyft, Uber), and the public parking lot located in the site vicinity, no vehicular parking spaces are proposed within the site.

The site is located within the south-west quadrant of the Spadina Avenue and St. Andrew Street intersection. The site location allows for convenient access to streetcars operating along Spadina Avenue (streetcar stations within 150 m from the site) and Dundas Street West (streetcar station within 200 m from the site), with an option to transfer to other transit routes such as Line 1 Yonge-University and Line 2 Bloor-Danforth subway. This proximity to the subway system provides transit accessibility for the site and will serve to reduce the reliance on auto trips for students of the proposed development.

The availability of vehicles-for-hire (i.e. Lyft, Uber) in Downtown Toronto reduces the need for tenants of the student residence to own vehicles, thus reducing the demand for parking spaces within the site. With the average wait time of 2.5 minutes for vehicles-for-hire in the site vicinity¹, the site is easily accessible via vehicles-for-hire. The public parking lot operate by Toronto Parking Authority (TPA) is located directly north of the site across St. Andrew Street, providing a total of 425 parking spaces. To assess the operating conditions of the parking lot, a full day parking accumulation study was conducted during the weekday (Friday) and weekend (Saturday and Sunday) periods and is summarized in **Graph 1**.

As noted in **Graph 1**, parking demand remained below the available capacity of 425 spaces during the weekday (Friday) and weekend (Saturday and Sunday) periods, with a peak demand of 350 spaces in the afternoon. Given the above, the parking lot directly north of the site can serve any anticipated vehicular site traffic of the proposed student residence and will appropriately accommodate the needs of the site.

Note:

^{1. &}quot;Research & Analysis, The Transportation Impacts of Vehicles-for-Hire in the City of Toronto," Big Data Innovation Team / Policy & Innovation / Transportation Services / City of Toronto, June 2019.

GRAPH 1: TPA GARAGE - 20 St. ANDREW STREET PARKING DEMAND SURVEY

5.2 BICYCLE PARKING

5.2.1 Zoning By-Law 569-2013 Bicycle Zone 1 Parking Requirements

The site is located within Bicycle Zone 1. **Table 3** outlines the Zoning By-law 569-2013 Bicycle Zone 1 parking requirements.

TABLE 3 ZONING BY-LAW 569-2013 BICYCLE ZONE 1 PARKING REQUIREMENTS

Use	Number of Units / GFA	Short –Term Bicycle Parking Rate	Long–Term Bicycle Parking Rate	Short –Term Bicycle Parking Requirement	Long–Term Bicycle Parking Requirement	Total
Residential	77	0.1 / dwelling unit	0.9 / dwelling unit	8	69	77
Ove	rall Bicycle Par	king Requireme	8	69	77	

Notes:

Section 230.5.10.1 (3) General, stipulates that despite the bicycle parking space rates set out in regulations 230.5.10.1(1) and 230.5.10.1(5) and (6), if a bicycle parking space is required for uses on a lot, other than a dwelling unit, and the total interior floor area of all such uses on the lot is 2000 m² or less, then no bicycle parking space is required. As such, no bicycle parking spaces are required for the retail use of 172 m².

Application of the City of Toronto By-law 569-2013 Bicycle 1 parking standards outlined in **Table 3** requires a total of 77 residential bicycle parking spaces including 8 short-term and 69 long-term bicycle parking spaces.

5.2.2 Proposed Bicycle Parking Supply

A total of 156 bicycle spaces are proposed at-grade (36 spaces) and within a bicycle storage room located at the basement level (120 spaces). The provision of 12 short-term and 144 long-term bicycle parking spaces meets and exceeds the minimum bicycle parking requirements set out in Zoning By-law 569-2013 Bicycle Zone 1 requirements, as well as Toronto Green Standards Version 3 Tier 1.

6.0 LOADING

6.1 ZONING BY-LAW 569-2013 LOADING REQUIREMENTS

The City of Toronto Zoning By-law 569-2013 prescribes the following loading requirements for the site as outlined in **Table 4**.

TABLE 4 ZONING BY-LAW 569-2013 LOADING REQUIREMENTS

Use	Type 'A'	Type 'B'	Type 'C'	Type 'G'	Total
Residential Uses (77 units)	-	-	-	1	1
Site Total	-	-	-	1	1

Application of the City of Toronto Zoning By-law 569-2013 loading requirements for the site results in a requirement of one (1) Type 'G' loading space for the site.

6.2 PROPOSED LOADING SUPPLY

The development program proposes one (1) Type 'G' loading space to provide for the garbage and recycling and loading/moving needs of the proposed residential uses. The provision of 1 Type 'G' space meets the requirements of Zoning By-law 569-2013.

The proposed Type 'G' loading facility is located on the west side of the proposed building approximately midway between the north and south property boundaries. The loading area is located with appropriate connections to garbage rooms and storage facilities within the proposed building.

Access to the loading area is provided the existing laneways west of the site. The arrangement of the loading area and related access facility has been designed to accommodate the manoeuvering needs of City of Toronto garbage and recycling collection vehicles as well as facilitating 'forward in / forward out' access to and from the site for City of Toronto garbage collection.

Loading vehicle manoeuvring diagrams (VMDs) illustrating the turning movement requirements of City of Toronto garbage and recycling collection vehicles are attached in **Appendix B**. These confirm the suitability and appropriateness of the proposed loading area design arrangements.

The design of the proposed loading area and the provision of one (1) Type 'G' loading space, is, based upon the above, and will meet the loading and refuse/recycling collection needs of the proposed building.

7.0 MOBILITY CHOICE TRAVEL PLAN

The Mobility Choice Travel Plan is organized into several categories that aim to effectively allow for sustainable transportation options to be viable, attractive, and preferred by development residents and visitors, while also enabling multi-modal access to the site.

The Mobility Choice Travel Plan is proposed to guide the provision of viable alternative personal transportation options beyond the single-occupant, private automobile and intends to support the development by outlining Transportation Demand Management (TDM) strategies to promote the use of more active and sustainable transportation modes, respond to the mobility needs of residents and visitors to the site, and reduce dependence on the private automobile.

Three specific objectives define the policy framework as part of the Mobility Choice Travel Plan:

- Encourage the use of transit, cycling, and walking;
- Increase vehicle occupancy; and
- Reduce vehicle kilometers traveled.

To ensure that the project sets a sustainable precedent in urban redevelopment and encourages the use of active and sustainable modes of transportation, a comprehensive framework has been developed that will serve as a guideline for the implementation of effective TDM strategies during the site design stage, as well as in its operations following the full redevelopment of the property.

7.1 IMPLEMENTATION AND ORGANIZATIONAL FRAMEWORK

7.1.1 Implementation

The Mobility Choice Travel Plan will serve as an initial guide for the design, development and implementation of the site, as well as the ultimate operation of the facilities over time to maximize the travel demand sustainability of the project and allow the development to fully leverage its location relative to the transportation options in the vicinity of the site.

7.2 ORGANIZATIONAL FRAMEWORK

The following six categories are identified as potential strategies:

- 1. Facilitation of Reduced Car Ownership and Usage
- 2. Enhance Pedestrian Access and Walkability
- 3. Encourage and Facilitate Bicycle use
- 4. Encourage Transit Use
- 5. Coordination, Communication, and Promotion

Within each of these categories, interventions considered for application may be further organized by the blocks of their implementation as the development progresses:

• Infrastructure (external links and facilities)

Measures to improve the active transportation realm along the boundaries of the site and to facilitate the integration of pedestrian and cycling infrastructure

· Facilities and features of the site plan and design

Physical aspects of the internal design of the development, including its buildings, and circulation routings to promote alternative transportation modes

Building operations / property management

User-focused programs and policies enacted once the site is operational to encourage alternative transportation modes

Monitoring

Post-occupancy data collection programs used to assess travel patterns and gauge the effectiveness of TDM strategies and the Mobility Choice Travel Plan as a whole

7.3 MOBILITY PLAN STRATEGIES

The future site context provides for frequent, higher-order public transit services and pedestrian connectivity. While strong opportunities exist in the area's infrastructure to accommodate sustainable transportation practices, the ability to fully leverage these opportunities, ensuring the success of the Mobility Plan strategies is important.

To this end, Mobility Plan strategies are presented with targeted "intents" (i.e. what it is trying to achieve and for whom), followed by discussions of the requirements and methods of implementation that should be considered. Potential strategies are then framed in the context of the development and strategies most appropriate for application are proposed.

7.4 FACILITATION OF REDUCED CAR OWNERSHIP AND USAGE

The development proposes strategies intended to provide alternatives to private car ownership and usage, to reduce the need for residents to own a car for occasional travel purposes and reduce the likelihood of a personally-owned car being used at other times for general travel.

INTENT

To provide alternative models for automobile use that will serve to:

- · Reduce the need for residents to own a car for occasional or discretionary travel; and
- Reduce the likelihood of privately-owned car use for general travel, particularly during peak periods.

POSSIBLE MEASURES

- Operational / Management:
 - o Provide no formal parking on site; and
 - Provide information and communication items that outline the availability of the on-site services as well as taxis, Uber, Lyft, and other ride provider service networks.
- Monitoring:
 - Offer information and promotional initiatives to increase membership, enhance awareness, and increase car share program usage.

7.5 ENHANCE PEDESTRIAN ACCESS AND WALKABILITY

The pedestrian strategy is to develop a high-quality, safe, accessible, and convenient network of pedestrian linkages that enhance local pedestrian connections to the site and progresses the area-wide pedestrian network. Implementing a pedestrian strategy is fundamental to ensuring residents and visitors of the development have a viable and attractive condition for walking and transit-based travel, and an alternative to automobile use for a portion of trips.

INTENT

To facilitate, as part of the proposal in cooperation with the City and other stakeholders, the development of a high-quality, accessible, and convenient network of pedestrian connections to the Site. This will:

- Enhance the walkability of the site at-grade and create a truly pedestrian-scaled environment;
- Assist in extending a high-quality, safe, accessible, and convenient network of pedestrian linkages that enhance local pedestrian connections and progresses the area-wide pedestrian network;
- Improve the quality of the public realm and pedestrian accessibility of the area to adjacent amenities, transit stops, recreational facilities, and retail located within the area; and
- Enhance the ability for residents and visitors to travel between the site and the surrounding neighborhoods and transit focal points without the use of a vehicle.

POSSIBLE MEASURES

- External Infrastructure:
 - Work with the City of Toronto towards realizing improvements to area pedestrian infrastructure, quality of the public realm and the convenience of pedestrian linkages / road crossings along the site boundaries and in the site area.
 - Provide high-quality, safe pedestrian-scale connections from the site property to the surrounding public street network.
 - o Provide a high quality public realm through urban design on the site's street frontages.
- Operational / Management:
 - Maintain on-site pedestrian facilities to enable year-round pedestrian access and usage.

7.6 ENCOURAGE AND FACILITATE BICYCLE USE

A bicycle strategy has been developed as part of the development plan, as a base to entice bicycle usage by residents and visitors to the site. The plan is proposed to encourage and enable bicycle use as a convenient travel option through the provision of physical and operational infrastructure as part of the overall development plan, and to work with the City and other stakeholders to enhance the local cycling network and overall cycling connectivity and accessibility. This will enable bicycle use as an attractive alternative to automobile use for a proportion of trips.

INTENT

To encourage and enable bicycle use as a convenient and viable travel alternative to the personal automobile through:

- The provision of physical and operational infrastructure on-site and within the building
- Cooperation with the City and other stakeholders, to enhance bicycle connectivity within the area to the broader cycling network

POSSIBLE MEASURES

- External Infrastructure:
 - Work with the City of Toronto towards realizing improvements to area bicycle infrastructure, quality of the bicycle facilities and connections in the site area.
 - Provide secure long-term bicycle parking in conveniently-located and accessible facilities in the building
 - Provide short-term bicycle parking distributed across the Site in conveniently-situated and readily accessible locations relative to key building entrances.
 - Provide, at a minimum, long-term and short-term bicycle parking supply in accordance with the minimum requirements of Zoning By-law 569-2013 and the Toronto Green Standards Tier 1.

7.7 ENCOURAGE TRANSIT USE

The proposed development is intended to make use of existing transit services in the area to reduce automobile related travel to and from the site and enhance the accessibility of the site.

INTENT

To support and promote the use of area transit services for short and long-distance travel purposes by residents and visitors. This will serve to:

- Increase the awareness, utility, practicality and viability of transit travel options for commuter and recreational travel purposes to / from a range of locations across the City and further afield:
- Enable high-quality and accessible pedestrian connections to existing 501 and 505 streetcar routes and St. Patrick subway station.
- Enable the universal use of transit.

POSSIBLE MEASURES

- Building, Planning and Design:
 - o Provide convenient, high-quality and accessible pedestrian realm
- Operational / Management:
 - Provide transit service information (i.e. route mapping, service times, next bus) for users of the building through televisions in the building lobby
 - o Offer transit promotion programmes (i.e. events, advertising).
 - Work with the City, transit operators and other stakeholders to provide a high level of local transit service to the Site environs.

7.8 COORDINATION, COMMUNICATION, AND PROMOTION

The proposed development is intended to make use of communication, promotion and awareness of TDM measures inform and monitor the success of the planned and implemented mobility framework strategies. Monitoring and refinement / adjustment of programs are proposed to be reviewed on a regular basis to continuously adapt and improve the services offered.

INTENT

To coordinate on-site travel demand strategies and the effective dissemination / promotion of program and service information to:

- Inform and raise awareness of non-automobile travel options for the Site;
- Actively promote non-automobile travel options and services;

POSSIBLE MEASURES

- Operational / Management:
 - Use of wayfinding and multi-modal navigation tools to augment the TDM services provided onsite.
 - The active marketing, branding and promotion of non-automobile travel options.
- Monitoring:
 - Monitor the success of programming
 - o Measure the site's modal split over time to examine the effectiveness of TDM interventions
 - o Refine programming on an ongoing and coordinated basis

7.9 SUMMARY OF KEY MEASURES

The following provides a summary of the measures proposed as part of the Mobility Choice Travel Plan.

TABLE 5 PROPOSED TDM MEASURES – BASE TDM MEASURES

Measure	Description	Travel Plan Objective					
Base TDM Measures							
Cyclist End of Trip	Secure, weather-protected bicycle parking for long-term use will be provided in secure locations.	Encourage alternative travel modes.					
Facilities	Short-stay bicycle parking will be provided near major entrances.	Reduce vehicle kilometres travelled.					
Pedestrian Connections	Provide a fine-grain and generous public realm, and provision of pedestrian sidewalks	Encourage alternative travel modes. Reduce vehicle kilometers travelled.					

TABLE 6 PROPOSED TDM MEASURES – ADDITIONAL POTENTIAL BUILDING SPECIFIC MEASURES

Additional Potential Building Specific TDM Measures					
		Encourage alternative travel modes.			
Bicycle Share Provisions	Potential provision of funding for 1 bike-share (Toronto Bike Share) station.	Reduce vehicle kilometres travelled.			
		Provide options for local area travel using bicycles rather that vehicles.			
Additional Cyclist End of Trip Facilities	Provision of 1 bicycle repair station	Encourage cycling use			
Travel Mode Information Packages	Implement a marketing program aimed at all users to ensure they are aware of available travel choices in the area (i.e. bike maps, bus schedules, etc.).	Encourage alternative travel modes.			

8.0 MULTI-MODAL TRAVEL DEMAND FORECASTING

The site location allows for convenient access to streetcars operating along Spadina Avenue (streetcar stations within 150 m from the site) and Dundas Street West (streetcar station within 200 m from the site), with an option to transfer to other transit routes such as Line 1 Yonge-University and Line 2 Bloor-Danforth subway. In addition, Spadina Avenue provides cycling lanes (i.e. sparrows) in the north-south direction. As such, the site is located in an area that is easily accessible through a transportation network that provides opportunities for non-automobile models of travel (i.e. cycling, walking, and transit).

For the purposes of this analysis, BA Group has projected the multi-modal travel demand for the proposed development based on a first principle multi-modal trip generation, as summarized in **Table 7**. Note that proxy counts were used in order to conservatively develop vehicular trip generation, notwithstanding the use of the first principle methodology for the purpose of multi-modal analysis.

The vehicular site trips were generated based on a review of pick-up and drop-off surveys at student residences in similar contexts, as discussed in **Section 9.4.2**. New multi-modal trips for the site were generated based on a first principle method and are summarized in **Table 7**.

TABLE 7 MULTI-MODAL SITE TRIP GENERATION

		AM Peak Hour			PM Peak Hour			
	In	Out	2-Way	In	Out	2-Way		
Number of Beds			9	4				
Peak Hour Factor ¹	3%	18%	-	17%	5%	-		
Total Person Trips ²	3	17	20	16	5	21		
Modal Split ³								
Auto	2%	1%	-	2%	1%	-		
Transit	16%	12%	-	16%	12%	-		
Cycling	5%	8%	-	5%	8%	-		
Walking	77%	79%	-	77%	79%	-		
Trips								
Auto	0	0	0	0	0	0		
Transit	0	2	2	3	1	4		
Cycling	1	1	2	1	0	1		
Walking	2	14	16	12	4	16		

Note:

- 1. The peak hour factor is the maximum hourly percentage calculated during each peak hour periods throughout a day. The data was queried and aggregated for a student residence land use in an urban context from the StudentMoveTO.
- 2. This assumes 100% occupancy of all beds.
- 3. The modal split was queried and aggregated for a student residence land use in an urban context from the StudentMoveTO.

Based on the foregoing, the proposed development will generate in the order of 20 and 21 two-way non-auto trips in the weekday morning and afternoon peak hours, respectively.

8.1 PEDESTRIAN VOLUMES

Existing pedestrian traffic volumes have been established at the Spadina Avenue / St. Andrew Street intersection crosswalks by direction based on traffic count information collected by Spectrum Traffic Data Inc. on behalf of BA Group. The overall pedestrian volumes at the key intersection of the study area under existing conditions are summarized in **Table 8**.

TABLE 8 TOTAL PEAK HOUR PEDESTRIAN VOLUMES (EXISTING CONDITIONS)

Intersection	Existing Pedestrian Volume	
Spadina Avenue / St. Andrew Street North Leg	32 (193)	
Spadina Avenue / St. Andrew Street South Leg	59 (196)	
Spadina Avenue / St. Andrew Street West Leg	196 (1091)	

Notes:

Forecasted pedestrian volumes for the proposed development plan were established based on the first principle multi-modal trip generation, as presented in **Table 7**. Pedestrian trip for the proposed development plan can be broken-down into two (2) categories and include:

- Transit based Pedestrian Trips these are pedestrian trips that walk to / from TTC Stations / Stops;
 and
- Primary Pedestrian Trips these are pedestrian trips where the primary mode of travel to their destination is walking.

As indicated in Table 7, the proposed development plan is anticipated to generate in the order of 2 and 4 two-way transit trips during the weekday morning and afternoon peak hours, respectively. These transit users are walking to and from the transit bus stops and subway stations within the study area. Each one of these transit trips are also treated as a pedestrian trip to / from the bus stop or subway station. It is anticipated that the majority of them will be making trips to the streetcar stops located near the Dundas Street West / Spadina Avenue and Spadina Avenue / Nassau Street intersections.

The site is also anticipated to generate approximately 16 and 16 two-way primary pedestrian trips during the weekday morning and afternoon peak hours, respectively. It is assumed that pedestrians will travel on the sidewalk on the side closest to the pedestrian doorway access for the proposed development. In addition, pedestrians were assumed to cross street only at pedestrian crosswalks (no jaywalkers) and they do so at the earliest opportunity on route to their destinations. It is anticipated that the majority of the primary pedestrians will travel along Spadina Avenue, via the Spadina Avenue / St. Andrew Street intersection.

^{1. 00 (00) –} Weekday morning peak hour (Weekday afternoon peak hour)

The overall addition of pedestrian traffic to the Spadina Avenue / St. Andrew Street intersection is in the order of 18 and 20 pedestrians during the weekday morning and afternoon peak hour periods, respectively. Of the transit pedestrians, the majority will be crossing in the east-west direction at the intersection, in addition to the north-south crossing for those heading to/from the north direction. The primary pedestrians will be utilizing the north-south crossing, in addition to the east-west crossing if in need. The current signal timing plan provides 40 cycles within an hour. This will result in an average of approximately 0.5 additional pedestrians crossing in the east-west and north-south directions per cycle.

Based on the foregoing, the site-generated pedestrian trips would have minimal impacts at the abovementioned intersection. As such, no specialized pedestrian improvements or improvements to the signal timing plans have been recommended.

8.2 CYCLING VOLUMES

Existing two-way cycling traffic volumes (on road) have been established at the area intersection based on traffic count information collected by Spectrum Traffic Data Inc. on behalf of BA Group. The cycling volumes at the key intersection within the study area under existing conditions are summarized in **Table 9**.

Table 9 Total Peak Hour Cycling Volumes (Existing Conditions)

Intersection	Existing Bicycle Volume
Spadina Avenue / St. Andrew Street North Leg	190 (97)
Spadina Avenue / St. Andrew Street South Leg	58 (214)
Spadina Avenue / St. Andrew Street West Leg	15 (20)

Notes:

Forecasted cycling volumes for the proposed development plan were established based on the first principle multi-modal trip generation, as presented in **Table 7**. As indicated in **Table 7**, the proposed development plan is anticipated to generate in the order of 2 and 1 two-way cycling trips during the weekday morning and afternoon peak hours, respectively. Based on the foregoing, the site-generated cycling trips have minimal to no impacts on the cycling facilities. As such, no improvements have been recommended to the cycling facilities for both on and off site.

^{1. 00 (00) –} Weekday morning peak hour (Weekday afternoon peak hour)

9.0 TRAFFIC VOLUMES FORECAST

9.1 TRAFFIC ANALYSIS SCENARIOS AND DESIGN PERIODS

Traffic operations analyses have been undertaken during the weekday morning and afternoon street peak hours under the following conditions:

- Existing traffic conditions traffic activity levels under current conditions;
- Future background traffic conditions traffic activity levels 5 years into the future which include allowance for corridor growth and area specific background developments; and
- Future total traffic conditions traffic activity levels 5 years into the future with the projected site generated traffic added to the road network.

9.2 EXISTING TRAFFIC

Existing baseline traffic volumes were established at intersections within the study area for the weekday morning and afternoon peak hour periods using traffic count information obtained from surveys undertaken by Spectrum Traffic Data Inc. on Wednesday, September 12, and Wednesday, September 19, 2018. A listing of the count data and sources are provided in **Table 10**.

TABLE 10 EXISTING TURNING MOVEMENT COUNT SUMMARY

Intersection	Control Type	Source Agency	Date Counted	Signal Timing Date ¹
Spadina Avenue / St. Andrew Street	Signalized	Spectrum Traffic Data Inc.	Wednesday September 12, 2018	August 13, 2018
St. Andrew Street / Kensington Avenue	Unsignalized	Spectrum Traffic Data Inc.	Wednesday September 19, 2018	-
St. Andrew Street / Site Access	Unsignalized	Spectrum Traffic Data Inc.	Wednesday September 12, 2018	-
St. Andrew Street / North-South Laneway/TPA	Unsignalized	Spectrum Traffic Data Inc.	Wednesday September 12, 2018	-
Spadina Avenue / Glen Baillie Place	Unsignalized	Spectrum Traffic Data Inc.	Wednesday September 12, 2018	-

Note:

The existing turning movement counts were reviewed in detail to ensure a general consistency in the traffic volumes on roadways between intersections. Where necessary, minor adjustments were made to balance traffic volumes between intersections to create a representative traffic volume base for the purposes of the traffic operations analyses undertaken as part of this study.

The existing turning movement counts are provided in **Appendix C**.

Existing, balanced baseline area traffic volumes for the weekday morning and afternoon peak traffic hours are summarized in **Figure 8**.

^{1.} Signal Timing data issued by the City of Toronto – Transportation Services.

9.3 FUTURE BACKGROUND TRAFFIC

Traffic growth in the site vicinity has been considered based upon an evaluation of traffic volume changes related to:

- General corridor growth on the area arterial roads (i.e. Spadina Avenue); and
- Specific area development traffic (i.e. background development traffic).

9.3.1 Corridor Traffic Growth

BA Group undertook a review of traffic growth patterns along Spadina Avenue in the site vicinity to assess whether there has been any substantial upward trend in traffic volumes on these corridors. This review indicated that there had been negative or no corridor growth along Spadina Avenue in the site vicinity.

An annual corridor traffic growth rate of 0.5% was conservatively assumed for the weekday morning and afternoon peak hours in north-south direction along Spadina Avenue. For the purposes of this traffic analysis, growth rates were applied to all the through movements at the Spadina Avenue / St. Andrew Street and Spadina Avenue / Glen Baillie intersections. The growth was applied over a five-year study horizon for 2023 horizon year.

9.3.2 Background Development Growth

Traffic allowances were made for other specific proposed developments in the area, based on a review of the City of Toronto's list of current development projects as of October 2018. These sites represent a total development in the order of 167 residential units.

Table 11 together with a description of the key development statistics for each. Traffic allowances made for each development were based upon traffic impact studies submitted to the City of Toronto as part of the development application process.

TABLE 11 AREA BACKGROUND DEVELOPMENTS

Development	Residential Units	Non-Residential	Source
484 Spadina Avenue	167 units	-	Traffic Impact Study, LEA, June 2018

Figure 9 summarizes the future background traffic volumes for the weekday morning and afternoon peak hours, which were developed by adding the abovementioned allowances for corridor traffic growth and the specific background development to base existing traffic volumes.

EXISTING LANE CONFIGURATION

EXISTING TRAFFIC VOLUMES

FUTURE BACKGROUND TRAFFIC VOLUMES

9.4 SITE TRAFFIC

9.4.1 Existing Site Traffic Volumes

Existing site related traffic volumes were counted during the morning and afternoon peak hour periods at the entrance of the surface parking lot of 17 St. Andrew Street. The traffic count was conducted on Wednesday, September 12, 2018, as summarized in **Table 12**.

TABLE 12 EXISTING SITE TRAFFIC VOLUMES

	AM Peak Hour				PM Peak Hour	
	In	Out	2-Way	In	Out	2-Way
Existing Site Traffic (17 St. Andrew Street)	2	0	2	6	12	18

Existing site traffic volumes are illustrated in Figure 10.

9.4.2 Site Trip Generation

The proposed development is contemplated to be a privately operated student residence that will accommodate students principally associated with universities and colleges located in the downtown core of Toronto. As such, the site proposes no on-site parking provisions for student tenants. Given the minimal on-site parking and the urban nature of the site location, the site-generated trips are anticipated to be negligible during both weekday morning and afternoon peal hour periods. Traffic associated with the site will reflect mainly pick-up and drop-off activities. Service vehicle activities (i.e. deliveries and refuse reflection) will occur during off-peak periods.

To capture the pick-up and drop-off activities, trip generation rates were established for the site based on a review of proxy data for student residential developments in the City of Toronto with similar size and transit characteristics, as summarized in **Table 13**.

TABLE 13 SITE TRIP GENERATION

Proxy Locations	# of Units	A	M Peak Hou	ır	PM Peak Hour			
		In	Out	2-Way	In	Out	2-Way	
Neill Wycik Co-op College	Neill Wycik Co-op College 281			0.000	0.014	0.014	0.028	
Aver	0.000	0.000	0.000	0.014	0.014	0.028		
Adop	ted Trip Rate	0.000	0.000	0.000	0.014	0.014	0.028	
New Site Tr	rips (78 units)	0	0	0	1	1	2	
Existing Site T	-2	0	-2	-6	-12	-18		
Net	-2	0	-2	-5	-11	-16		

The proposed residential development will generate approximately -2 and -16 two-way vehicle trips during the weekday morning and afternoon peak traffic hours, respectively.

9.4.3 Toronto Green Standard Version 3

The Toronto Green Standard (TGS) is Toronto's sustainable design requirements for new developments that aim to promote sustainable site and building design across five areas. TGS consists of multiple tiers of sustainable performance measures (from Tier 1 to Tier 4) where Tier 1 is mandatory as part of the planning approval process, whereas Tiers 2 to 4 are voluntary. A new Version 3 of the TGS is applicable to development applications submitted after May 1, 2018.

The Tier 1 standard within the updated TGS requires all development proposals to reduce single occupancy auto vehicle trips generated by the proposed development by 15% through the adopted TDM measures and multimodal infrastructure strategies for the site. As such, the impacts of the adopted TDM measures and site context on the proposed site trip generation must be quantified. The combined effect of the adopted TDM measures and multimodal infrastructure strategies were assessed based on a comparison to default trip generation derived from the ITE Trip Generation Manual 10th Edition for an urban locational context and is summarized in **Table 14**.

TABLE 14 TRIP GENERATION REDUCTION SUMMARY

	Inbound	Outbound	Two-Way
ITE (Land Use 225: Off-Campus Student Apartment)	5 (12)	7 (12)	12 (24)
Site Trip Generation	0 (1)	0 (1)	0 (2)
Reduction	100% (92%)	100% (92%)	100% (92%)

Notes:

1. xx (xx) [xx] – AM (PM) [SAT]

2. ITE Trips based on Land Use 225 Off-Campus Student Apartment average rates

As outlined above, a comparison of the ITE trip generation to the projected site trip generation, with the adoption of the suggested Mobility Choice Travel Plan (noted in Section 0), is anticipated to have a reduced two-way trips generation by approximately 92% to 100% during the study peak hours. As such, this reduction meets and exceeds the requirements set out within the TGS for Tier 1.

9.4.4 Trip Distribution and Assignment

The trip distribution pattern for the site traffic was established based on a review of 2016 Transportation Tomorrow Survey (TTS) data for home-based vehicle trips to and from the study area during the weekday morning and afternoon peak hour periods. The distribution of inbound and outbound residential site traffic adopted for the proposed development is outlined in **Table 15**.

TABLE 15 RESIDENTIAL TRIP DISTRIBUTION

To / From	Inbound	Outbound		
North on Spadina Avenue	50%	40%		
South on Spadina Avenue	50%	45%		
South on Kensington Avenue	0%	15%		
Total	100%	100%		

Notes:

New site traffic volumes assigned to the area road network are illustrated in **Figure 11**. Net new site traffic volumes are illustrated in **Figure 12**.

9.5 FUTURE TOTAL TRAFFIC

Future total traffic volumes were established by adding site-generated traffic to future background traffic volumes. **Figure 13** illustrates future total traffic volumes for the weekday morning and afternoon peak hours.

^{1.} Trip distribution data based on a review of 2011 TTS data for 2006 Transportation Analysis Zones 67, 68, 74, 75, 76, 91, 92, and 93

EXISTING SITE TRAFFIC VOLUMES (TO BE REMOVED)

NET NEW SITE TRAFFIC VOLUMES

FUTURE TOTAL TRAFFIC VOLUMES

10.0 TRAFFIC OPERATION ANALYSIS

10.1 METHODOLOGY

Traffic operations analyses have been completed using Synchro (Version 9.2) software package in accordance with the methodologies outlined in the *Highway Capacity Manual* (HCM 2000) and the City of Toronto's *Transportation Impact Study Guidelines*.

The key performance indicator of the signalized intersection evaluation is an intersection performance index (volume to capacity, or v/c), where v/c index of 1.00 indicates 'at capacity' conditions.

The key performance indicator of the unsignalized intersection / driveway analyses is the average delay per vehicle (in seconds) and a level of service (LOS) designation, ranging from LOS A (little delay) to LOS F (extended delay), with respect to the relative time for a motorist to complete a travel movement at an intersection or driveway.

Signal Timing Plans

Existing traffic signal timing plans for all signalized intersections within the study area were obtained from the City of Toronto. Analyses were undertaken using these signal timing plans for existing, future background and future total traffic conditions.

The existing traffic signal timing planes are provided in **Appendix E**.

Road Network Assumptions

Existing lane configurations in the area road network have been assumed in the analysis for the existing and future background traffic conditions.

Under future total traffic conditions, site access will be provided via a single driveway on St. Andrew Street. This driveway will operate under STOP-controlled with full vehicular manoeuvres permitted.

10.2 STUDY AREA INTERSECTIONS

Traffic operations and site traffic related impacts have been reviewed at the following area intersections through capacity analysis:

Signalized

Spadina Avenue / St. Andrew Street

Unsignalized

- Spadina Avenue / Glen Baillie Place
- St. Andrew Street / Site Access
- St. Andrew Street / North-South Laneway/TPA Garage
- St. Andrew Street / Kensington Avenue

10.2.1 Signalized Intersection Analysis

The following sections summarize the existing, future background and future total traffic conditions at the study area signalized intersection listed below:

Spadina Avenue / St. Andrew Street

The existing signal timing plan was maintained through the existing, future background, and future total scenarios. **Table 16** summaries the traffic operates under existing, future background and future total conditions at the key study area signalized intersection.

Table 16 Signalized Intersections - Traffic Operations Analysis

Intersection / Movement	Existinç	Existing Traffic Future Background Traffic		Future Total Traffic		
	V/C	LOS	V/C	LOS	V/C	LOS
Spadina Avenue	/ St. Andrew St	reet				
EBLR	0.01 (0.11)	B (B)	0.01 (0.11)	B (B)	0.01 (0.10)	B (B)
NBL	0.12 (0.06)	B (B)	0.12 (0.06)	B (B)	0.11 (0.05)	B (B)
NBT	0.25 (0.35)	B (B)	0.26 (0.36)	B (B)	0.26 (0.36)	B (B)
SBT	0.55 (0.38)	C (C)	0.57 (0.39)	C (C)	0.57 (0.39)	C (C)
SBR	0.09 (0.40)	B (D)	0.09 (0.41)	B (D)	0.09 (0.38)	B (D)
Overall	0.30 (0.28)	B (B)	0.31 (0.29)	B (B)	0.31 (0.28)	B (B)

Notes:

1. xx (xx) – morning peak hour (afternoon peak hour)

Under existing traffic conditions, the intersection operates at an acceptable level of service during the weekday morning and afternoon peak traffic hours with overall v/c ratios of 0.30 and 0.28, respectively.

Under future background traffic conditions with the allowances of specific area development and general corridor growth, the intersection continues to operate at acceptable level of service during the weekday morning and afternoon peak traffic hours with overall v/c ratios of 0.31 and 0.29, respectively.

With the addition of site-related traffic under future total traffic conditions, the intersections continues to operate at an acceptable level of service during the weekday morning and afternoon peak traffic hours with overall v/c ratios of 0.31 and 0.28, respectively.

Based on the foregoing, the traffic generated by the proposed development can be acceptably accommodated at the Spadina Avenue / St. Andrew Street intersection. No mitigation measures or improvements are recommended at this intersection.

10.2.2 Unsignalized Intersection Analysis

The following sections summarize the existing, future background and future total traffic conditions at the study area unsignalized intersections listed below:

- Spadina Avenue / Glen Baillie Place
- St. Andrew Street / Site Access
- St. Andrew Street / North-South Laneway/TPA Garage
- St. Andrew Street / Kensington Avenue

Traffic operations at all unsignalized intersections within the study area are at acceptable level of service under all scenarios without any need for road improvements or mitigation measures. All movements will function at LOS A to LOS D in the future total scenarios. **Table 17** summaries the traffic operates under existing, future background and future total conditions at the study area unsignalized intersections.

TABLE 17 UNSIGNALIZED INTERSECTIONS - TRAFFIC OPERATIONS ANALYSIS

Movement	Existing	g Traffic	Future Backg	round Traffic	Future To	tal Traffic				
	Delay (s)	LOS	Delay (s)	LOS	Delay (s)	LOS				
Spadina Aven	Spadina Avenue / Glen Baillie Place									
EBR	9.7 (26.9)	A (D)	9.6 (26.9)	A (D)	9.6 (26.9)	A (D)				
St. Andrew St	reet / Site Acces	S								
WBLT	0.2 (0.9)	A (A)	0.2 (0.9)	A (A)	-	-				
NBLR	0.0 (8.9)	A (A)	0.0 (8.9)	A (A)	-	-				
St. Andrew St	reet / North-Sou	th Laneway/TPA	Garage ¹							
WBLTR	0.2 (0.0)	A (A)	0.2 (0.0)	A (A)	0.2 (0.1)	A (A)				
NBLTR	0.0 (11.6)	A (B)	0.0 (11.6)	A (B)	0.0 (11.1)	A (B)				
SBLTR	0.0 (16.8)	A (C)	0.0 (16.8)	A (C)	0.0 (16.7)	A (C)				
St. Andrew St	St. Andrew Street / Kensington Avenue									
WBL	9.5 (13.0)	A (B)	9.5 (13.0)	A (B)	9.5 (12.9)	A (B)				
SBLT	5.1 (3.8)	A (A)	5.1 (3.8)	A (A)	5.1 (3.8)	A (A)				

Note:

Given the above, new site related activities can, as such, be appropriately accommodated at the area unsignalized intersections.

^{1.} For the purpose of this analysis, the inbound and outbound driveways for the TPA parking garage (20 St. Andrew Street) are modelled as a single, 2-way driveway. The north-south laneway was modelled as the south leg of this intersection.

APPENDIX A:Reduced-scaled Architectural Drawings

		. 70
977.0	OBLOS.	7 AZ 2 AM 75 AM
PROPE	200	NA SIGNA
10 M	90	MKSSW MKSSO XTO
85	200	AND O CORRES
25	Ĭ,	2000 1000 1000 1000 1000 1000 1000 1000
UROS	8	A PO
2,000	90	MORY MIC A
80	90	TO DO
88	98	A TON
7790	130	0 M
ONYBORD BESTARD. HIS DESIGN AND DOWNNESS ARE THE DOLL LARK PROPERTY OF THE DESIGNARY AND CARROTTEE USED FOR ANY PLAPFOSE AT MOUTH ELECTRONISM.	IS CRAMING SHOT TO BE USED FOR CONSTRUCTION UNTILISASED FOR THAT PARPOSE C'HE DESIGNER.	CORP. TO COMMISSIONED OF THE INCOS. THE CONTRICTOR SHALL VERTY ALL INCOSES, CHARLOW, CALLOW INTELL STORM OF INCOSES, CHARLOW IN DECESSION CONTRICTS AND WE COCCUPANT OF ADDITION OF THE CONTRICT OF CONTRICTS AND SHELL TRUE OF THE ATTENDED OF CONTRICTS AND SHELL TRUE OF THE ATTENDED OF THE CONTRICTS AND CONTRICT
904 908 908 908	2000	2008 1008 1008 1008 1008 1008 1008 1008
807	24	9 4 6 6

TITIE

DRAWING LIST
STATISTICS & PERSPECTIVE
SUNEY
CONTEXT PLAN
BASEMENT PLAN
BASEMENT PLAN
PLAN - LEVEL 01
PLAN - LEVEL 02
PLAN - LEVEL 04
PLAN - LEVEL 04
PLAN - LEVEL 06
PLAN - LEVEL 06
PLAN - LEVEL 06
PLAN - LEVEL 06
ROOF PLAN
ELEVATION - NORTH
ELEVATION - SOUTH
ELEVATION - SOUTH
ELEVATION - WEST
COLOUR ELEVATION
SECTION A
SECTION B
SECTION D

PLANNING
INCOMING
INC

17 ST ANDREW ST TORONTO

Issued for ZBA Submission September 27th, 2019

STUDENT FOCUSED HOUSING	17 St.Andrew Street Toronto, Ontario M6T1K7	The Impressions Group 305 Town Cente Blvd, Suite 101 Markham, Onlanb L3R 0Y6
S	22	E S Z

DRAWING LIST

MA & CO MA 2019.09.27
DRAWN CHECKED PLOTTED
41839 NTS 2018.0329
PROJECT SCALE DATE

2019/09/27	C
8	C
PLOTTED	۷
2018.0329	

AERIAL VIEW FROM SOUTH WEST

Statistics Template - Toronto Owee Standard Version 3.0 Mid to High Rise Residential and all New Non-Residential Development

General Project Description Proposed	pe		
Sotal Gross Floor Avea	6	0404-26	
Beskdown of project components (m?)			
Residential	32	3282.70	
Retail	-	171.5	
Commercial		N/A	
bolistical		N/A	
Institutional/Other		NA	
Total number of residential units		11	
ute Plan Control Applications Automobile Infrastructure	Regured	Proposed	Proposed %
Automobile infrastructure	Regured	Phonosed	Proposed %
Number of Parking Spaces	44	0	0
Number of parking spaces dedicated for priority LEV parking	-	0	0
Number of perking spaces with EVSE	-	0	0
Cycling infrastructure	Bequired	Proposed	Proposed %
Number of long-term bloycle panimg spaces (residental)	69	143	207
Number of long-term bicycle parking spaces (all otherwest)	-	-	100
Number of long-term bayon parking (all uses) located on:			
a) first storey of building	NA	24	N/A
to second storey of building	N/A	0	N/A
c) first level below-ground	N/A	120	N/A
d) second level below-ground	N/A	0	N/A
e) other levels below-ground	NA	0	N/A
Cycling infrastructure	Haquing	Proposed	и реторотя
Number of short-term (scycle parking spaces (nesidential)	00	89	100
Number of short-term bicycle parking spaces (sill other uses)	6	**	133
Number of male shower and change facilities (non-residential)	0	0	
the section of the same of the section of the secti			

1,454.20	TOTAL Numbersial TOTAL Building	V49
3,282.70	TOTAL Residential OFA	NAMO

	TOTAL MESS BALLINES SPIN	95			11	
BMDMAN	Non-Besidental/Long Long Term - Retail Short Term - Betail TOTAL NON-BES BLCCI	610/100m 510/100m 1+03/100m 19ACE - Long Ter	E	Areas 130an 130an	Required 3	Provided
\$30W65 3 030W0 7W100	Tot Bike Spaces Long Term Short Term	Aes 163 1	Non-Res 1			97AL 144
	TOTAL	151	×		٦	156
9	Bicycle Space Location					3
NOT	revel	Long-Term D	MACES Sort-Term L	Ing-Term	Shert Term	TOTAL
	15	23	*	1	7	36
21	BASEMENT	130		0		330
	TOTAL	143	•	-	*	316

136		Provided 320.7	159.1	181.6	Γ	TOTAL	33.4	2883	320.7
7		Act 704	154	154	ĺ		_		
0 #			20 a 77	20 8 77					
*						Outdoor	0	341.6	161.6
130		milant	2.0m/unit	2.0m/sm2		Indoor Out		122.7	158.1
BASEMENT TOTAL	By Law 54th 2013	TOTAL Res Amenity + 4.5	Indoor Amenity	Outdoor Arrently	Amenty Space Location	Canal	BASEMENT	MEDISH	TOTAL
71	30	WHS ALL	NBN	×	,	NOU OVES			Y

Required TYPE G

Mr. 23 million of the						-									a de la constante de	Share and the					1000	10000					
						202	MENG CHIN	ZOMING GROSS FLOOR AREA	DRABEA					RSA (RE	SECULIAL	REACHESTORING SALEABLE AREAS			NOW SES		TOTAL	EFF.					
						200	DEDUCTIONS	¥					25	DEDUCTIONS													
- Constant	-	9	-	-					r	+	Seeding .	- 7		,	0 (July 1)	4 O T	00-			E.	= 7	- 0					
	DROMENU BONYO MOTAR	WOO BACTERWE	ME EMB/SOVINGES EMBRESSYS	SWICERASTS	BAZINMANTE TIKE	3010010101010101	ME ANDROY VICTORIA ALIMONY	DHEMINA \$134,318	ANOTES OF KIND	\$8000.11710	water	WAR-DWINOS	MOCREMOD / AMROY	stweet	Swintouding Jaffer	***	SUS UNIO 1049 SUS UNIO 1049	ETEVSVET - TYCHONINGO	COMMERCIAL-BOAL	MIDI	PROFESSION - TRUMPOSION	nucerci	00125				TWINI
PANDADA	1	1929	300				111			380	1000	the contract	- 683		683	2864	181				2866	MW					
SHOUND FLOOR		TUE .		183	THE SEC	1880		i			2ms2	4223	96.7	920	2887	100		400	418	tus	284.0	Man					
FL008-02	4	8000		N.2		67			111	18	1424	842.6	483	2754	427	684	57.5				618.0	90.7%		*			12
\$1,00k 03		199		P	313	7					625	286.0	124	21.9	1003	(369	11.6				4887	STAR	•	-		-	,
100000		1000		79		87					100	6003	227	278	384	THE	107				- Calar	87.75					p
10000 or		8420		178		27					013	8008	000		280	1213	202				200	1000	12	*			
ROOFTOP MICHAMINETY LEVEL	12 N. W.	2820		No.		27	ALL			100	808			3	179	400	999				900	400			2		
1014	1	CERT	101	124	1967	718	100.0		2	994.8	Cases	24844	400.0	400	6125	1,38.2	819	1993	413	sus.	CHES	HILL	1	2	2	-	10
	1						l	l	l	l	1		l		ĺ												

LANDS CAPE JANET ROSE/BRIGG + STU HISHERMOCO AVE YORK, OWTARDO MIC 253	CONIL. CCUE BYGANE RWG TO VALLE YMOOD DR. MARSHAM, CWTARO USR 4TS
ARBORIST CONTRALTREE CARE LTD SO BOOTH ANE. TORCOVER OF TARRED MAR 2012	PL. ANNING BOUSHILDS INC. 3 CHURCHS TREET TORCONTO, DWINGSO NEE 11/2

DA COSTID

A AND WILLIAM OF AND	ENT FOCUSED HOUSING W Street Tanto MST1K7

)	STUDENT FOCUSED HOUSING	17 St.Andrew Sneet Toranto, Orbanio 165 T.K.7	The Impressions Group 30s Town Cente Blvd Sufe 101
	S	Toro	308

31/1	VES	2019,09.27
306 Town Certe Blvd. Sale 101 Markham, Onland LIR 076 CTATICTICS o DED SEP CYTIVES	EKSPECII	DRAWN CHECKED PLOTTED
306 Town Centre Blvd, Sule 101 Markham, Onlano L3R 0Y6	2 E S S S S S S S S S S S S S S S S S S	41839 NTS 2019.08.13
306 Town C Mantham, O	A H	PROJECT SCALE DATE

$\overline{}$	ı
0	
9	
4	ı
	ı
	ı

TRANSPORTATION
BAGGUP
BAGGUP
AS ST. GAR WE W. SUT
TORGNEO, OVERAGO
MATING

STUDENT FOCUSED HOUSING

DRAMN CHECKED PLOTTED 41839 As Noted 2019;08:15

A004 STUDENT FOCUSED HOUSING
To Studious Soils
To Studious Soils
The improvisors Good
The improvisors Good
To Bood on the Bood
Million of Color Labora
SITE PLAN DRAWN CHECKED PLOTTED REDORIST
CORD OF A COUNTY CONTROL
OF A COUNTY 41839 1:150 2017.11.30 PROJECT SCALE DATE GLEN BAILLIE PL NO.8 GLEN BALLE PLACE NOT3ST. ANDREWST NO.15 ST. ANDREWST •

APPENDIX B: Vehicle Manoeuvring Diagrams (VMDs)

APPENDIX C: Turning Movement Counts (TMCs)

Approach%

Totals %

0.3%

99.7% 0%

49.2% 0%

100%

0.2%

49.4%

0% 0%

0%

0%

0%

0%

Turning Movement Count Location Name: SPADINA AVE & DARCY ST / GLEN BAILLE PL Date: Wed, Sep 12, 2018 Deployment Lead: Theo Daglis

BA Group 45 St. Clair Avenue West, Suite 300 Toronto ON, CANADA, M4V 1K9

Turning Movement Count (2 . SPADINA AVE & DARCY ST / GLEN BAILLE PL) N Approach E Approach S Approach W Approach Int. Total Int. Total SPADINA AVE DARCY ST SPADINA AVE GLEN BAILLE PL (15 min) (1 hr) Start Time Left U-Turn Peds Thru Left U-Turn Peds Left U-Turn Peds Thru Left U-Turn Right Thru Right Right Thru Right Peds Approach Total Approach Total Approach Total Approach Total S:W W:E W:N N:W N:S N:E N:N N: E:N E:W E:S E:E E: S:E S:N S:S S: W:S W:W W: 07:30:00 07:45:00 08:00:00 08:15:00 08:30:00 08:45:00 09:00:00

09:15:00	0	167	0	0	20	167	1	0	0	0	91	1	9	122	0	0	1	131	1	0	0	0	44	1	300	1232
BREAK	(,																								
16:00:00	1	120	0	0	0	121	0	0	0	0	189	0	9	130	0	0	2	139	2	0	0	0	162	2	262	
16:15:00	0	122	0	0	0	122	0	0	0	0	226	0	6	135	0	0	5	141	0	0	0	0	170	0	263	
16:30:00	0	99	0	0	2	99	1	0	0	0	201	1	1	158	0	0	6	159	1	0	0	0	175	1	260	
16:45:00	1	109	0	0	2	110	0	0	0	0	192	0	5	138	0	0	2	143	0	0	0	0	152	0	253	1038
17:00:00	0	116	0	0	5	116	0	0	0	0	203	0	7	135	0	0	3	142	0	0	0	0	196	0	258	1034
17:15:00	1	152	0	0	1	153	3	0	0	0	215	3	9	147	0	0	4	156	0	0	0	0	200	0	312	1083
17:30:00	0	115	0	0	1	115	1	0	0	0	268	1	12	163	0	0	1	175	1	0	0	0	166	1	292	1115
17:45:00	0	122	0	0	6	122	0	0	0	0	250	0	10	178	0	0	5	188	0	0	0	0	143	0	310	1172
Grand Total	7	2155	0	0	104	2162	9	0	0	0	2182	9	144	2055	0	0	37	2199	10	0	0	0	1596	10	4380	-

пеачу	U	2	U	U	-	U	U	U	U	-	1	3	U	U	-		U	U	U	U	-	-	-
Heavy %	0%	0.1%	0%	0%	-	0%	0%	0%	0%	-	0.7%	0.1%	0%	0%	-	(0%	0%	0%	0%	-	-	-
Bicycles	4	478	0	0	-	21	0	1	0	-	17	461	0	0	-		3	0	0	0	-	-	-
Bicycle %	57.1%	22.2%	0%	0%	-	233.3%	0%	0%	0%	-	11.8%	22.4%	0%	0%	-	3	80%	0%	0%	0%	-	-	-

6.5%

3.3%

0.2%

93.5%

46.9%

0%

0%

0%

0%

100% 0% 0%

0.2%

0% 0%

50.2%

0%

0%

0.2%

Turning Movement Count Location Name: SPADINA AVE & DARCY ST / GLEN BAILLE PL Date: Wed, Sep 12, 2018 Deployment Lead: Theo Daglis

BA Group 45 St. Clair Avenue West, Suite 300 Toronto ON, CANADA, M4V 1K9

						Р	eak H	our:	08:	30 AM	- 09:3	O AM We	ather	: Part	ly C	loudy	(16.2	°C)							
Start Time				N Appro						E Appro						S Approa SPADINA						W Appr GLEN BA			Int. Total (15 min)
	Right	Thru	Left	U-Turn	Peds	Approach Total	Right	Thru	Left	U-Turn	Peds	Approach Total	Right	Thru	Left	U-Turn	Peds	Approach Total	Right	Thru	Left	U-Turn	Peds	Approach Total	
08:30:00	0	147	0	0	10	147	0	0	0	0	67	0	13	115	0	0	0	128	0	0	0	0	27	0	275
08:45:00	0	196	0	0	18	196	1	0	0	0	102	1	15	108	0	0	4	123	0	0	0	0	29	0	320
09:00:00	2	189	0	0	12	191	1	0	0	0	56	1	14	130	0	0	0	144	1	0	0	0	40	1	337
09:15:00	0	167	0	0	20	167	1	0	0	0	91	1	9	122	0	0	1	131	1	0	0	0	44	1	300
Grand Total	2	699	0	0	60	701	3	0	0	0	316	3	51	475	0	0	5	526	2	0	0	0	140	2	1232
Approach%	0.3%	99.7%	0%	0%		-	100%	0%	0%	0%		-	9.7%	90.3%	0%	0%		-	100%	0%	0%	0%		-	-
Totals %	0.2%	56.7%	0%	0%		56.9%	0.2%	0%	0%	0%		0.2%	4.1%	38.6%	0%	0%		42.7%	0.2%	0%	0%	0%		0.2%	-
PHF	0.25	0.89	0	0		0.89	0.75	0	0	0		0.75	0.85	0.91	0	0		0.91	0.5	0	0	0		0.5	
Heavy	0	1	0	0		1	0	0	0	0		0	1	1	0	0		2	0	0	0	0		0	-
Heavy %	0%	0.1%	0%	0%		0.1%	0%	0%	0%	0%		0%	2%	0.2%	0%	0%		0.4%	0%	0%	0%	0%		0%	<u>.</u>
Lights	2	660	0	0		662	2	0	0	0		2	43	445	0	0		488	2	0	0	0		2	-
Lights %	100%	94.4%	0%	0%		94.4%	66.7%	0%	0%	0%		66.7%	84.3%	93.7%	0%	0%		92.8%	100%	0%	0%	0%		100%	-
Mediums	0	38	0	0		38	1	0	0	0		1	7	29	0	0		36	0	0	0	0		0	-
Mediums %	0%	5.4%	0%	0%		5.4%	33.3%	0%	0%	0%		33.3%	13.7%	6.1%	0%	0%		6.8%	0%	0%	0%	0%		0%	-
Articulated Trucks	0	1	0	0		1	0	0	0	0		0	1	1	0	0		2	0	0	0	0		0	-
Articulated Trucks %	0%	0.1%	0%	0%		0.1%	0%	0%	0%	0%		0%	2%	0.2%	0%	0%		0.4%	0%	0%	0%	0%		0%	-
Pedestrians	-	-	-	-	59	-	-	-	-	-	311	-	-	-	-	-	5	-	-	-	-	-	138	-	-
Pedestrians%	-	-	-	-	11.3%		-	-	-	-	59.7%		-	-	-	-	1%		-	-	-	-	26.5%		-
Bicycles on Crosswalk	-	-	-	-	1	-	-	-	-	-	5	-	-	-	-	-	0	-	-	-	-	-	2	-	-
Bicycles on Crosswalk%	-	-	-	-	0.2%		-	-	-	-	1%		-	-	-	-	0%		-	-	-	-	0.4%		-
Bicycles on Road	1	195	0	0	0	-	2	0	0	0	0	-	5	60	0	0	0	-	0	0	0	0	0	-	-
Bicycles on Road%	-	-	-	-	0%		-	-	-	-	0%		-	-	-	-	0%		-	-	-	-	0%		-

Turning Movement Count Location Name: SPADINA AVE & DARCY ST / GLEN BAILLE PL Date: Wed, Sep 12, 2018 Deployment Lead: Theo Daglis

BA Group 45 St. Clair Avenue West, Suite 300 Toronto ON, CANADA, M4V 1K9

							Pe	ak F	lour	: 05:00	PM -	06:00 PM	Wea	ther:	Clea	ır (19.	5 °C)								
Start Time				N Appro a SPADINA						E Appro						S Approa SPADINA						W Appr GLEN BA			Int. Total (15 min)
	Right	Thru	Left	U-Turn	Peds	Approach Total	Right	Thru	Left	U-Turn	Peds	Approach Total	Right	Thru	Left	U-Turn	Peds	Approach Total	Right	Thru	Left	U-Turn	Peds	Approach Total	
17:00:00	0	116	0	0	5	116	0	0	0	0	203	0	7	135	0	0	3	142	0	0	0	0	196	0	258
17:15:00	1	152	0	0	1	153	3	0	0	0	215	3	9	147	0	0	4	156	0	0	0	0	200	0	312
17:30:00	0	115	0	0	1	115	1	0	0	0	268	1	12	163	0	0	1	175	1	0	0	0	166	1	292
17:45:00	0	122	0	0	6	122	0	0	0	0	250	0	10	178	0	0	5	188	0	0	0	0	143	0	310
Grand Total	1	505	0	0	13	506	4	0	0	0	936	4	38	623	0	0	13	661	1	0	0	0	705	1	1172
Approach%	0.2%	99.8%	0%	0%		-	100%	0%	0%	0%		-	5.7%	94.3%	0%	0%		-	100%	0%	0%	0%		-	-
Totals %	0.1%	43.1%	0%	0%		43.2%	0.3%	0%	0%	0%		0.3%	3.2%	53.2%	0%	0%		56.4%	0.1%	0%	0%	0%		0.1%	-
PHF	0.25	0.83	0	0		0.83	0.33	0	0	0		0.33	0.79	0.88	0	0		0.88	0.25	0	0	0		0.25	
Heavy	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	
Heavy %	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	<u>-</u>
Lights	1	483	0	0		484	4	0	0	0		4	37	602	0	0		639	1	0	0	0		1	-
Lights %	100%	95.6%	0%	0%		95.7%	100%	0%	0%	0%		100%	97.4%	96.6%	0%	0%		96.7%	100%	0%	0%	0%		100%	-
Mediums	0	22	0	0		22	0	0	0	0		0	1	21	0	0		22	0	0	0	0		0	-
Mediums %	0%	4.4%	0%	0%		4.3%	0%	0%	0%	0%		0%	2.6%	3.4%	0%	0%		3.3%	0%	0%	0%	0%		0%	-
Articulated Trucks	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	-
Articulated Trucks %	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	-
Pedestrians	-	-	-	-	13	-	-	-	-	-	935	-	-	-	-	-	13	-	-	-	-	-	705	-	-
Pedestrians%	-	-	-	-	0.8%		-	-	-	-	56.1%		-	-	-	-	0.8%		-	-	-	-	42.3%		-
Bicycles on Crosswalk	-	-	-	-	0	-	-	-	-	-	1	-	-	-	-	-	0	-	-	-	-	-	0	-	-
Bicycles on Crosswalk%	-	-	-	-	0%		-	-	-	-	0.1%		-	-	-	-	0%		-	-	-	-	0%		-
Bicycles on Road	1	116	0	0	0	-	10	0	0	0	0	-	2	229	0	0	0	-	1	0	0	0	0	-	-
Bicycles on Road%	-	-	-	-	0%		-	-	-	-	0%		-	-	-	-	0%		-	-	-	-	0%		-

BA Group 45 St. Clair Avenue West, Suite 300 Toronto ON, CANADA, M4V 1K9

Peak Hour: 08:30 AM - 09:30 AM Weather: Partly Cloudy (16.2 °C)

Peak Hour: 05:00 PM - 06:00 PM Weather: Clear (19.5 °C)

Turning Movement Count Location Name: SPADINA AVE & ST ANDREW ST Date: Wed, Sep 12, 2018 Deployment Lead: Theo Daglis

BA Group 45 St. Clair Avenue West, Suite 300 Toronto ON, CANADA, M4V 1K9

Turning Movement Count (1 . SPADINA AVE & ST ANDREW ST)

			N Арр	roach					oroach		· · · · ·		W App	oroach		Int. Total	Int. Total
Start Time			SPADII			_		SPADI			_		ST AND			(15 min)	(1 hr)
Start Time	Right N:W	Thru N:S	U-Turn N:N	Peds N:	Approach Total	Thru S:N	Left S:W	U-Turn S:S	Peds S:	Approach Total	Right W:S	Left W:N	U-Turn W:W	Peds W:	Approach Total		
07:30:00	5	87	0	4	92	74	5	0	0	79	3	3	0	17	6	177	
07:45:00	11	111	0	4	122	90	5	2	5	97	1	2	0	17	3	222	
08:00:00	7	146	0	2	153	81	8	4	7	93	1	1	0	33	2	248	
08:15:00	6	146	0	9	152	123	10	1	14	134	4	2	0	48	6	292	939
08:30:00	9	142	0	8	151	102	3	2	13	107	1	1	0	47	2	260	1022
08:45:00	4	196	0	7	200	105	4	1	17	110	1	0	0	55	1	311	1111
09:00:00	5	176	0	7	181	117	8	9	13	134	2	1	0	37	3	318	1181
09:15:00	7	158	0	10	165	110	12	3	16	125	1	2	0	57	3	293	1182
BREAK	(-		-				-						
16:00:00	5	99	0	54	104	112	3	8	53	123	10	10	0	253	20	247	
16:15:00	6	108	0	57	114	130	3	2	43	135	7	14	0	238	21	270	
16:30:00	11	87	0	31	98	147	4	4	46	155	7	16	0	216	23	276	
16:45:00	10	102	0	51	112	135	3	1	25	139	7	8	0	233	15	266	1059
17:00:00	6	100	0	44	106	124	4	4	46	132	5	8	0	257	13	251	1063
17:15:00	9	136	0	46	145	141	5	6	36	152	7	7	0	291	14	311	1104
17:30:00	6	106	0	53	112	154	6	4	73	164	5	9	0	287	14	290	1118
17:45:00	14	114	0	50	128	166	6	2	41	174	7	9	0	256	16	318	1170
Grand Total	121	2014	0	437	2135	1911	89	53	448	2053	69	93	0	2342	162	4350	-
Approach%	5.7%	94.3%	0%		-	93.1%	4.3%	2.6%		-	42.6%	57.4%	0%		-	-	-
Totals %	2.8%	46.3%	0%		49.1%	43.9%	2%	1.2%		47.2%	1.6%	2.1%	0%		3.7%	-	-
Heavy	0	1	0		-	2	0	0		-	0	0	0		-	-	-
Heavy %	0%	0%	0%		-	0.1%	0%	0%		-	0%	0%	0%		-	-	-
Bicycles	16	440	0		-	415	7	0		-	29	23	0		-	-	-
Bicycle %	13.2%	21.8%	0%		-	21.7%	7.9%	0%		-	42%	24.7%	0%		-	-	-
waina Mayamant C								-	2000 1 06	•							DACTOLICE

Turning Movement Count Location Name: SPADINA AVE & ST ANDREW ST Date: Wed, Sep 12, 2018 Deployment Lead: Theo Daglis

BA Group 45 St. Clair Avenue West, Suite 300 Toronto ON, CANADA, M4V 1K9

				Peak H	Hour: 08:30 AN	/ 1 - 09:3	30 AM	Wea	ther: P	Partly Cloudy (16.2 ° (C)				
Start Time				proach INA AVI					roach NA AVE	<u> </u>			W App	oroach PREW S	Т	Int. Total (15 min)
	Right	Thru	U-Turn	Peds	Approach Total	Thru	Left	U-Turn	Peds	Approach Total	Right	Left	U-Turn	Peds	Approach Total	
08:30:00	9	142	0	8	151	102	3	2	13	107	1	1	0	47	2	260
08:45:00	4	196	0	7	200	105	4	1	17	110	1	0	0	55	1	311
09:00:00	5	176	0	7	181	117	8	9	13	134	2	1	0	37	3	318
09:15:00	7	158	0	10	165	110	12	3	16	125	1	2	0	57	3	293
Grand Total	25	672	0	32	697	434	27	15	59	476	5	4	0	196	9	1182
Approach%	3.6%	96.4%	0%		-	91.2%	5.7%	3.2%		-	55.6%	44.4%	0%		-	-
Totals %	2.1%	56.9%	0%		59%	36.7%	2.3%	1.3%		40.3%	0.4%	0.3%	0%		0.8%	-
PHF	0.69	0.86	0		0.87	0.93	0.56	0.42		0.89	0.63	0.5	0		0.75	-
Heavy	0	1	0		1	0	0	0		0	0	0	0		0	-
Heavy %	0%	0.1%	0%		0.1%	0%	0%	0%		0%	0%	0%	0%		0%	-
Lights	23	635	0		658	402	27	15		444	5	4	0		9	-
Lights %	92%	94.5%	0%		94.4%	92.6%	100%	100%		93.3%	100%	100%	0%		100%	-
Mediums	2	36	0		38	32	0	0		32	0	0	0		0	-
Mediums %	8%	5.4%	0%		5.5%	7.4%	0%	0%		6.7%	0%	0%	0%		0%	-
Articulated Trucks	0	1	0		1	0	0	0		0	0	0	0		0	-
Articulated Trucks %	0%	0.1%	0%		0.1%	0%	0%	0%		0%	0%	0%	0%		0%	-
Pedestrians	-	-	-	31	-	-	-	-	51	-	-	-	-	195	-	-
Pedestrians%	-	-	-	10.8%		-	-	-	17.8%		-	-	-	67.9%		-
Bicycles on Crosswalk	-	-	-	1	-	-	-	-	8	-	-	-	-	1	-	-
Bicycles on Crosswalk%	-	-	-	0.3%		-	-	-	2.8%		-	-	-	0.3%		-
Bicycles on Road	3	187	0	0	-	58	0	0	0	-	10	5	0	0	-	-
Bicycles on Road%	-	-	-	0%		-	-	-	0%		-	-	-	0%		-

Turning Movement Count Location Name: SPADINA AVE & ST ANDREW ST Date: Wed, Sep 12, 2018 Deployment Lead: Theo Daglis

BA Group 45 St. Clair Avenue West, Suite 300 Toronto ON, CANADA, M4V 1K9

Peak Hour: 05:00 PM - 06:00 PM \	Weather: Clear ((19.5 ° C)
----------------------------------	------------------	-----------	---

					July 110 u. 1 0010		00.00			011 0100 (1010	•,					
Start Time				proach INA AVE					roach NA AVE	≣			W App	proach DREW S	ST	Int. Total (15 min)
	Right	Thru	U-Turn	Peds	Approach Total	Thru	Left	U-Turn	Peds	Approach Total	Right	Left	U-Turn	Peds	Approach Total	
17:00:00	6	100	0	44	106	124	4	4	46	132	5	8	0	257	13	251
17:15:00	9	136	0	46	145	141	5	6	36	152	7	7	0	291	14	311
17:30:00	6	106	0	53	112	154	6	4	73	164	5	9	0	287	14	290
17:45:00	14	114	0	50	128	166	6	2	41	174	7	9	0	256	16	318
Grand Total	35	456	0	193	491	585	21	16	196	622	24	33	0	1091	57	1170
Approach%	7.1%	92.9%	0%		-	94.1%	3.4%	2.6%		-	42.1%	57.9%	0%		-	-
Totals %	3%	39%	0%		42%	50%	1.8%	1.4%		53.2%	2.1%	2.8%	0%		4.9%	-
PHF	0.63	0.84	0		0.85	0.88	0.88	0.67		0.89	0.86	0.92	0		0.89	-
Heavy	0	0	0		0	0	0	0		0	0	0	0		0	-
Heavy %	0%	0%	0%		0%	0%	0%	0%		0%	0%	0%	0%		0%	-
Lights	34	432	0		466	571	20	16		607	23	33	0		56	-
Lights %	97.1%	94.7%	0%		94.9%	97.6%	95.2%	100%		97.6%	95.8%	100%	0%		98.2%	-
Mediums	1	24	0		25	14	1	0		15	1	0	0		1	-
Mediums %	2.9%	5.3%	0%		5.1%	2.4%	4.8%	0%		2.4%	4.2%	0%	0%		1.8%	-
Articulated Trucks	0	0	0		0	0	0	0		0	0	0	0		0	-
Articulated Trucks %	0%	0%	0%		0%	0%	0%	0%		0%	0%	0%	0%		0%	-
Pedestrians	-	-	-	175	-	-	-	-	186	-	-	-	-	1089	-	-
Pedestrians%	-	-	-	11.8%		-	-	-	12.6%		-	-	-	73.6%		-
Bicycles on Crosswalk	-	-	-	18	-	-	-	-	10	-	-	-	-	2	-	-
Bicycles on Crosswalk%	-	-	-	1.2%		-	-	-	0.7%		-	-	-	0.1%		-
Bicycles on Road	7	90	0	0	-	209	5	0	0	-	10	10	0	0	-	-
Bicycles on Road%	-	-	-	0%		-	-	-	0%		-	-	-	0%		-

Peak Hour: 08:30 AM - 09:30 AM Weather: Partly Cloudy (16.2 °C)

Peak Hour: 05:00 PM - 06:00 PM Weather: Clear (19.5 °C)

Bicycle % 15.8% 0% 0% 7.1% 0%

Turning Movement Count Location Name: ST ANDREW ST & GLEN BAILLE PL Date: Wed, Sep 12, 2018 Deployment Lead: Theo Daglis

BA Group 45 St. Clair Avenue West, Suite 300 Toronto ON, CANADA, M4V 1K9

														Turning	Movem	ent Co	unt (3	. ST AI	NDRE	EW ST	& GLEN E	BAILLE	PL)														
			Р	N App ARKING	roach GARAC	GE					E Appr ST ANDF					PRIN		E Approa c		/EWAY				S GL	S Appr EN BA	oach ILLE PL						Appr ANDR	oach EW ST			Int. Total	Int. Total
Start Time	Right	: Thru N:S		Left N:E	U- Turn N:N	Peds N:	Approach Total	Right E:N	Thru E:W	Left E:S	Hard Left E:SE	U- Turn E:E	Peds E:	Approach Total	Hard Right SE:E	Bear Right SE:N	Bear Left SE:W	Hard Left SE:S	U- Turn SE:SI		Approach Total	Hard Right S:SE		Thru S:N		U- Turn S:S	Peds S:	Approach Total	Right W:S	Bear Right W:SE	Thru W:E	Left W:N	U- Turn W:W	Peds W:	Approach Total	(15 min)	(1 hr)
07:30:00	0	0	0	0	0	11	0	8	1	0	0	0	0	9	0	0	0	0	0	4	0	0	0	0	0	0	4	0	0	0	5	0	0	2	5	14	
07:45:00	0	0	0	0	0	5	0	13	2	0	0	1	6	16	0	0	0	0	0	11	0	0	0	0	0	0	7	0	0	0	1	0	0	1	1	17	
08:00:00	0	0	0	0	0	14	0	9	2	2	1	0	7	14	0	0	0	0	0	2	0	0	0	0	0	0	1	0	0	0	2	0	0	3	2	16	
08:15:00	0	0	0	0	0	13	0	11	4	0	1	0	7	16	0	0	0	0	0	7	0	0	0	0	0	0	9	0	0	0	5	0	0	2	5	21	68
08:30:00	0	0	0	1	0	14	1	9	1	1	0	0	7	11	0	0	0	0	0	8	0	0	0	0	0	0	17	0	0	0	1	0	0	2	1	13	67
08:45:00	0	0	0	0	0	25	0	6	3	0	0	0	5	9	0	0	0	0	0	6	0	0	1	0	0	0	7	1	0	0	0	0	0	0	0	10	60
09:00:00	0	0	0	1	0	17	1	8	5	0	0	0	4	13	0	0	0	0	0	7	0	0	0	0	0	0	10	0	0	0	1	0	0	0	1	15	59
09:15:00	1	0	0	1	0	18	2	12	4	0	1	0	3	17	0	0	0	0	0	13	0	0	0	0	0	0	15	0	0	0	1	0	0	0	1	20	58
BREA	\K	********						-							-																					-	
16:00:00	3	0	0	7	0	60	10	3	7	0	3	1	11	14	5	0	1	0	0	31	6	0	0	0	0	0	36	0	0	0	9	0	0	4	9	39	
16:15:00	1	0	0	13	0	78	14	4	6	0	2	0	14	12	1	0	1	0	0	34	2	0	1	0	1	0	37	2	0	0	6	0	0	8	6	36	
16:30:00	0	0	0	17	0	64	17	6	5	0	1	0	17	12	0	0	1	0	0	33	1	0	0	0	0	0	30	0	0	0	4	0	0	1	4	34	
16:45:00	5	0	0	6	0	45	11	1	6	0	0	0	11	7	2	0	1	0	0	45	3	0	0	0	0	0	47	0	0	0	3	0	0	1	3	24	133
17:00:00	2	0	0	7	0	77	9	4	5	0	2	2	17	13	3	0	0	0	0	56	3	0	0	0	0	0	58	0	0	0	3	0	0	2	3	28	122
17:15:00	3	0	1	10	0	64	14	4	7	1	1	0	14	13	0	0	1	0	0	40	1	0	1	0	0	0	40	1	1	0	3	0	0	0	4	33	119
17:30:00	1	0	0	10	0	57	11	4	7	0	1	0	13	12	0	0	1	0	0	35	1	0	0	0	0	0	36	0	0	1	6	0	0	0	7	31	116
17:45:00	3	0	0	12	0	51	15	7	11	0	1	2	12	21	0	0	0	0	0	31	0	0	0	0	0	0	28	0	0	1	3	0	0	1	4	40	132
Grand Total	19	0	1	85	0	613	105	109	76	4	14	6	148	209	11	0	6	0	0	363	17	0	3	0	1	0	382	4	1	2	53	0	0	27	56	391	-
Approach%	18.1%	0%	1%	81%	0%		-	52.2%	36.4%	1.9%	6.7%	2.9%		-	64.7%	0%	35.3%	0%	0%		-	0%	75%	0%	25%	0%		-	1.8%	3.6%	94.6%	0%	0%		-	-	
Totals %	4.9%	0%	0.3%	21.7%	0%		26.9%	27.9%	19.4%	1%	3.6%	1.5%		53.5%	2.8%	0%	1.5%	0%	0%		4.3%	0%	0.8%	0%	0.3%	0%		1%	0.3%	0.5%	13.6%	0%	0%		14.3%	-	-
Heavy	-	-	-	-	-		-	-	-	-	-	-		-	-	-	-	-	-		-	-	-	-	-	-		-	-	-	-	-	-		-	-	-
Heavy %	-	-	-	-	-		-	-	-	-	-	-		-	-	-	-	-	-		-	-	-	-	-	-		-	-	-	-	-	-		-	-	-
Bicycles	3	0	0	6	0		-	2	80	1	0	0		-	0	0	0	0	0		-	0	1	0	0	0		-	0	0	63	1	0		-	-	-

33.3% 0% 0% 0%

0%

0%

118.9% 0% 0%

0%

0%

1.8% 105.3% 25% 0%

Turning Movement Count Location Name: ST ANDREW ST & GLEN BAILLE PL Date: Wed, Sep 12, 2018 Deployment Lead: Theo Daglis

BA Group 45 St. Clair Avenue West, Suite 300 Toronto ON, CANADA, M4V 1K9

													Peak	Hour: 07:	30 AM -	08:30 A	M W	eather	: Part	ly Clo	udy (16.2	°C)														
Start Time			F		pproacl NG GAR						E App ST AND		г			PRI	SE /ATE PAF	Approad		EWAY						roach AILLE F	PL					/ Appro	roach REW ST	г		Int. Total
Start Time	Right	Thru	Bear Left	Left	U- Turn	Peds	Approach Total	Right	Thru	Left	Hard Left	U- Turn	Peds	Approach Total	Hard Right	Bear Right	Bear Left	Hard Left	U- Turn	Peds	Approach Total	Hard Right	Right	Thru	Left	U- Turn	Peds	Approach Total	Right	Bear Right	Thru	Left	U- Turn	Peds	Approach Total	(15 min)
07:30:00	0	0	0	0	0	11	0	8	1	0	0	0	0	9	0	0	0	0	0	4	0	0	0	0	0	0	4	0	0	0	5	0	0	2	5	14
07:45:00	0	0	0	0	0	5	0	13	2	0	0	1	6	16	0	0	0	0	0	11	0	0	0	0	0	0	7	0	0	0	1	0	0	1	1	17
08:00:00	0	0	0	0	0	14	0	9	2	2	1	0	7	14	0	0	0	0	0	2	0	0	0	0	0	0	1	0	0	0	2	0	0	3	2	16
08:15:00	0	0	0	0	0	13	0	11	4	0	1	0	7	16	0	0	0	0	0	7	0	0	0	0	0	0	9	0	0	0	5	0	0	2	5	21
Grand Total	0	0	0	0	0	43	0	41	9	2	2	1	20	55	0	0	0	0	0	24	0	0	0	0	0	0	21	0	0	0	13	0	0	8	13	68
Approach%	0%	0%	0%	0%	0%		-	74.5%	16.4%	3.6%	3.6%	1.8%		-	0%	0%	0%	0%	0%		-	0%	0%	0%	0%	0%		-	0%	0%	100%	0%	0%		-	-
Totals %	0%	0%	0%	0%	0%		0%	60.3%	13.2%	2.9%	2.9%	1.5%		80.9%	0%	0%	0%	0%	0%		0%	0%	0%	0%	0%	0%		0%	0%	0%	19.1%	0%	0%		19.1%	-
PHF	0	0	0	0	0		0	0.79	0.56	0.25	0.5	0.25		0.86	0	0	0	0	0		0	0	0	0	0	0		0	0	0	0.65	0	0		0.65	-
Heavy	-	-		-				-			-													-	-	-			-		-	-	-			-
Heavy %	-	-	-	-	-		%	-	-	-	-	-		%	-	-	-	-	-		%	-	-	-	-	-		%	-	-	-	-	-		%	-
Lights	0	0	0	0	0		0	41	9	2	2	1		55	0	0	0	0	0		0	0	0	0	0	0		0	0	0	12	0	0		12	-
Lights %	0%	0%	0%	0%	0%		0%	100%	100%	100%	100%	100%		100%	0%	0%	0%	0%	0%		0%	0%	0%	0%	0%	0%		0%	0%	0%	92.3%	0%	0%		92.3%	-
Mediums	0	0	0	0	0		0	0	0	0	0	0		0	0	0	0	0	0		0	0	0	0	0	0		0	0	0	1	0	0		1	-
Mediums %	0%	0%	0%	0%	0%		0%	0%	0%	0%	0%	0%		0%	0%	0%	0%	0%	0%		0%	0%	0%	0%	0%	0%		0%	0%	0%	7.7%	0%	0%		7.7%	-
Pedestrians	-	-	-	-	-	40	-	-	-	-	-	-	20	-	-	-	-	-	-	24	-	-	-	-	-	-	21	-	-	-	-	-	-	8	-	-
Pedestrians%	-	-	-	-	-	34.5%		-	-	-	-	-	17.2%		-	-	-	-	-	20.7%		-	-	-	-	-	18.1%		-	-	-	-	-	6.9%		-
Bicycles on Crosswalk	-	-	-	-	-	3	-	-	-	-	-	-	0	-	-	-	-	-	-	0	-	-	-	-	-	-	0	-	-	-	-	-	-	0	-	-
Bicycles on Crosswalk%	-	-	-	-	-	2.6%		-	-	-	-	-	0%		-	-	-	-	-	0%		-	-	-	-	-	0%		-	-	-	-	-	0%		-
Bicycles on Road	0	0	0	0	0	0	-	2	2	0	0	0	0	-	0	0	0	0	0	0	-	0	0	0	0	0	0	-	0	0	5	0	0	0	-	-
Bicycles on Road%	-	-	-	-	-	0%		-	-	-	-	-	0%		-	-	-	-	-	0%		-	-	-	-	-	0%		-	-	-	-	-	0%		-

Turning Movement Count Location Name: ST ANDREW ST & GLEN BAILLE PL Date: Wed, Sep 12, 2018 Deployment Lead: Theo Daglis

BA Group 45 St. Clair Avenue West, Suite 300 Toronto ON, CANADA, M4V 1K9

													F	Peak Hour	: 04:00 F	PM - 05	:00 PM	We	ather	Clear	· (19.5 °C)															
Start Time			F	N App Parking							E App ST AND		ST			PRI	SE VATE PAF	Approa		EWAY					S App GLEN B		L					Approa				Int. Total
Start Time	Right	Thru	Bear Left	Left	U- Turn	Peds	Approach Total	Right	t Thru	ı Left	Hard Left	U- Turn	Peds	Approach Total	Hard Right	Bear Right	Bear Left	Hard Left	U- Turn	Peds	Approach Total	Hard Right	Right	Thru	ı Left	U- Turn	Peds	Approach Total	Right	Bear Right	Thru	1 611	U- F Turn	Peds	Approach Total	(15 min)
16:00:00	3	0	0	7	0	60	10	3	7	0	3	1	11	14	5	0	1	0	0	31	6	0	0	0	0	0	36	0	0	0	9	0	0	4	9	39
16:15:00	1	0	0	13	0	78	14	4	6	0	2	0	14	12	1	0	1	0	0	34	2	0	1	0	1	0	37	2	0	0	6	0	0	8	6	36
16:30:00	0	0	0	17	0	64	17	6	5	0	1	0	17	12	0	0	1	0	0	33	1	0	0	0	0	0	30	0	0	0	4	0	0	1	4	34
16:45:00	5	0	0	6	0	45	11	1	6	0	0	0	11	7	2	0	1	0	0	45	3	0	0	0	0	0	47	0	0	0	3	0	0	1	3	24
Grand Total	9	0	0	43	0	247	52	14	24	0	6	1	53	45	8	0	4	0	0	143	12	0	1	0	1	0	150	2	0	0	22	0	0	14	22	133
Approach%	17.3%	0%	0%	82.7%	0%		-	31.1%	6 53.3%	6 0%	13.3%	2.2%		-	66.7%	0%	33.3%	0%	0%		-	0%	50%	0%	50%	0%		-	0%	0%	100%	0%	0%		-	-
Totals %	6.8%	0%	0%	32.3%	0%		39.1%	10.5%	6 18%	0%	4.5%	0.8%		33.8%	6%	0%	3%	0%	0%		9%	0%	0.8%	0%	0.8%	0%		1.5%	0%	0%	16.5%	0%	0%		16.5%	-
PHF	0.45	0	0	0.63	0		0.76	0.58	0.86	0	0.5	0.25		0.8	0.4	0	1	0	0		0.5	0	0.25	0	0.25	0		0.25	0	0	0.61	0	0		0.61	-
Heavy	-	-	-	-					-	-	-				-	-		-	-			-		-	-				-			-	-			-
Heavy %		-	-	-			%	-	-	-		-		%		-					%	-						%	-	-	-	-	-		%	-
Lights	9	0	0	43	0		52	14	24	0	6	1		45	8	0	4	0	0		12	0	1	0	1	0		2	0	0	22	0	0		22	-
Lights %	100%	0%	0%	100%	0%		100%	100%	5 100%	6 0%	100%	100%		100%	100%	0%	100%	0%	0%		100%	0%	100%	0%	100%	0%		100%	0%	0%	100%	0%	0%		100%	-
Mediums	0	0	0	0	0		0	0	0	0	0	0		0	0	0	0	0	0		0	0	0	0	0	0		0	0	0	0	0	0		0	-
Mediums %	0%	0%	0%	0%	0%		0%	0%	0%	0%	0%	0%		0%	0%	0%	0%	0%	0%		0%	0%	0%	0%	0%	0%		0%	0%	0%	0%	0%	0%		0%	-
Pedestrians	-	-	-	-	-	247	-	-	-	-	-	-	53	-	-	-	-	-	-	142	-	-	-	-	-	-	150	-	-	-	-	-	-	14	-	-
Pedestrians%	-	-	-	-	-	40.7%		-	-	-	-	-	8.7%		-	-	-	-	-	23.4%		-	-	-	-	-	24.7%		-	-	-	-	- 2	2.3%		-
Bicycles on Crosswalk	-	-	-	-	-	0	-	-	-	-	-	-	0	-	-	-	-	-	-	1	-	-	-	-	-	-	0	-	-	-	-	-	-	0	-	-
Bicycles on Crosswalk%	-	-	-	-	-	0%		-	-	-	-	-	0%		-	-	-	-	-	0.2%		-	-	-	-	-	0%		-	-	-	-	-	0%		-
Bicycles on Road	2	0	0	3	0	0	-	0	37	0	0	0	0	-	0	0	0	0	0	0	-	0	0	0	0	0	0	-	0	0	17	1	0	0	-	-
Bicycles on Road%	-	-	-	-	-	0%		-	-	-	-	-	0%		-	-	-	-	-	0%		-	-	-	-	-	0%		-	-	-	_	-	0%		-

Peak Hour: 07:30 AM - 08:30 AM Weather: Partly Cloudy (16.2 °C) AANE sington Market Legend: BALDWIN ST ### (#.# %) TOTAL VEHICLES (HEAVY %) Lane East Spadina North D'Arcy BALDWIN ST BALDWIN ST (0.0%) 0 (0.0%) 0 AUGUSTA AVE SPADINA AVE D'ARC Ke (0.0%) 0 (0.0%) 13 21 Lane East Spadina ! (0.0%) 0 N SQ DENISON SQ (0.0%) 0 SPADINA AVE CENSINGTON AVE 0(0.0%) 0 (0.0%) 0 (0.0%) AUGUSTA AVE SPAT llevue Square Fitzroy Ter Bicycles on Crosswalk Pedestrians Ν 40 WALES AVE S 0 21 SE 24 0 Ε 20 IDAS W 8 0 160 158

Peak Hour: 04:00 PM - 05:00 PM Weather: Clear (19.5 °C)

Turning Movement Count Location Name: ST ANDREW ST & KENSINGTON AVE Date: Wed, Sep 19, 2018 Deployment Lead: Theo Daglis

BA Group 45 St. Clair Avenue West, Suite 300 Toronto ON, CANADA, M4V 1K9

Turning Movement Count (4 . ST ANDREW ST & KENSINGTON AVE)

			N App					E App	roach				S App			Int. Total	Int. Total
Start Time			ST AND	REW S	ST		K	ENSING	TON A	AVE			ST AND	REW S	ST	(15 min)	(1 hr)
Start Time	Thru N:S	Left N:E	U-Turn N:N	Peds N:	Approach Total	Right E:N	Left E:S	U-Turn E:E	Peds E:	Approach Total	Right S:E	Thru S:N	U-Turn S:S	Peds S:	Approach Total		
07:30:00	1	1	0	4	2	0	1	0	0	1	0	0	0	0	0	3	
07:45:00	2	3	0	6	5	0	0	0	6	0	0	0	0	4	0	5	
08:00:00	1	0	0	4	1	0	7	0	1	7	0	0	0	0	0	8	
08:15:00	1	0	0	10	1	0	0	0	5	0	0	0	0	5	0	1	17
08:30:00	0	1	0	4	1	0	5	0	12	5	0	0	0	5	0	6	20
08:45:00	2	1	0	5	3	0	2	0	7	2	0	0	0	3	0	5	20
09:00:00	3	3	0	12	6	1	6	0	11	7	1	0	0	8	1	14	26
09:15:00	1	2	0	6	3	0	7	1	17	8	0	0	0	7	0	11	36
***BREAK	(***	·															
16:00:00	5	2	0	64	7	0	14	0	74	14	1	0	0	11	1	22	
16:15:00	8	3	0	85	11	0	4	0	67	4	0	1	0	15	1	16	
16:30:00	8	2	0	69	10	0	9	0	63	9	0	0	0	17	0	19	
16:45:00	7	3	0	59	10	0	6	0	65	6	0	0	0	25	0	16	73
17:00:00	5	4	0	59	9	0	7	0	45	7	0	0	0	13	0	16	67
17:15:00	8	5	0	60	13	0	10	0	51	10	0	0	0	11	0	23	74
17:30:00	6	1	0	54	7	0	9	0	60	9	0	0	0	16	0	16	71
17:45:00	8	2	0	81	10	0	4	0	65	4	0	0	0	23	0	14	69
Grand Total	66	33	0	582	99	1	91	1	549	93	2	1	0	163	3	195	-
Approach%	66.7%	33.3%	0%		-	1.1%	97.8%	1.1%		-	66.7%	33.3%	0%		-		-
Totals %	33.8%	16.9%	0%		50.8%	0.5%	46.7%	0.5%		47.7%	1%	0.5%	0%		1.5%	-	-
Heavy	-	-	-		-	-	-	-		-	-	-	-		-	-	-
Heavy %	-	-	-		-	-	-	-		-	-	-	-		-	-	-
Bicycles	28	46	0		-	52	14	0		-	11	34	0		-	-	-
Bicycle %	42.4%	139.4%	0%		-	5200%	15.4%	0%		-	550%	3400%	0%		-	-	-
unaina Mayamant C								Da	1 (DACTOLICE

Bicycles on Road%

Turning Movement Count Location Name: ST ANDREW ST & KENSINGTON AVE Date: Wed, Sep 19, 2018 Deployment Lead: Theo Daglis

BA Group 45 St. Clair Avenue West, Suite 300 Toronto ON, CANADA, M4V 1K9

0%

				Peak	Hour: 08:30 A	M - 09	:30 AN	l Wea	ather:	Unknown (17.2	2 °C)					
Start Time				proach DREW S	īT			E Apı KENSIN	proach GTON A	NVE				proach DREW		Int. Total (15 min)
	Thru	Left	U-Turn	Peds	Approach Total	Right	Left	U-Turn	Peds	Approach Total	Right	Thru	U-Turn	Peds	Approach Total	
08:30:00	0	1	0	4	1	0	5	0	12	5	0	0	0	5	0	6
08:45:00	2	1	0	5	3	0	2	0	7	2	0	0	0	3	0	5
09:00:00	3	3	0	12	6	1	6	0	11	7	1	0	0	8	1	14
09:15:00	1	2	0	6	3	0	7	1	17	8	0	0	0	7	0	11
Grand Total	6	7	0	27	13	1	20	1	47	22	1	0	0	23	1	36
Approach%	46.2%	53.8%	0%	<u>'</u>	-	4.5%	90.9%	4.5%		-	100%	0%	0%		-	-
Totals %	16.7%	19.4%	0%		36.1%	2.8%	55.6%	2.8%		61.1%	2.8%	0%	0%		2.8%	-
PHF	0.5	0.58	0		0.54	0.25	0.71	0.25		0.69	0.25	0	0		0.25	-
Heavy	-		-									-				-
Heavy %	-	-	-		%	-	-	-		%	-	-	-		%	-
Lights	5	7	0		12	0	18	1		19	0	0	0		0	-
Lights %	83.3%	100%	0%		92.3%	0%	90%	100%		86.4%	0%	0%	0%		0%	-
Mediums	1	0	0		1	1	2	0		3	1	0	0		1	-
Mediums %	16.7%	0%	0%		7.7%	100%	10%	0%		13.6%	100%	0%	0%		100%	-
Pedestrians	-	-	-	27	-	-	-	-	47	-	-	-	-	23	-	-
Pedestrians%	-	-	-	27.8%		-	-	-	48.5%		-	-	-	23.7%		-
Bicycles on Crosswalk	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
Bicycles on Crosswalk%	-	-	-	0%		-	-	-	0%		-	-	-	0%		-
Bicycles on Road	3	16	0	0	-	0	2	0	0	-	4	1	0	0	-	-

0%

0%

Turning Movement Count Location Name: ST ANDREW ST & KENSINGTON AVE Date: Wed, Sep 19, 2018 Deployment Lead: Theo Daglis

BA Group 45 St. Clair Avenue West, Suite 300 Toronto ON, CANADA, M4V 1K9

Peak Hour: 04:30 PM - 05:30 PM Weather: Clear (21.3 °C)

					uk 110u1. 04.00		00.00		Cutile	11. Olcai (21.0	Ο,					
Start Time			N App	roach REW S	ST.			E Ap _l KENSIN	proach GTON A	AVE				proach DREW		Int. Total (15 min)
	Thru	Left	U-Turn	Peds	Approach Total	Right	Left	U-Turn	Peds	Approach Total	Right	Thru	U-Turn	Peds	Approach Total	
16:30:00	8	2	0	69	10	0	9	0	63	9	0	0	0	17	0	19
16:45:00	7	3	0	59	10	0	6	0	65	6	0	0	0	25	0	16
17:00:00	5	4	0	59	9	0	7	0	45	7	0	0	0	13	0	16
17:15:00	8	5	0	60	13	0	10	0	51	10	0	0	0	11	0	23
Grand Total	28	14	0	247	42	0	32	0	224	32	0	0	0	66	0	74
Approach%	66.7%	33.3%	0%		-	0%	100%	0%		-	0%	0%	0%		-	-
Totals %	37.8%	18.9%	0%		56.8%	0%	43.2%	0%		43.2%	0%	0%	0%		0%	-
PHF	0.88	0.7	0		0.81	0	0.8	0		0.8	0	0	0		0	<u>-</u>
Heavy	-	-	-			-	-	-			-	-	-			-
Heavy %	-	-			%	-	-	-		%	-	-	-		%	<u>-</u>
Lights	28	14	0		42	0	31	0		31	0	0	0		0	-
Lights %	100%	100%	0%		100%	0%	96.9%	0%		96.9%	0%	0%	0%		0%	-
Mediums	0	0	0		0	0	1	0		1	0	0	0		0	-
Mediums %	0%	0%	0%		0%	0%	3.1%	0%		3.1%	0%	0%	0%		0%	-
Pedestrians	-	-	-	246	-	-	-	-	224	-	-	-	-	61	-	-
Pedestrians%	-	-	-	45.8%		-	-	-	41.7%		-	-	-	11.4%		-
Bicycles on Crosswalk	-	-	-	1	-	-	-	-	0	-	-	-	-	5	-	-
Bicycles on Crosswalk%	-	-	-	0.2%		-	-	-	0%		-	-	-	0.9%		-
Bicycles on Road	8	9	0	0	-	20	7	0	0	-	2	18	0	0	-	-
Bicycles on Road%	-	-	-	0%		-	-	-	0%		-	-	-	0%		-

Peak Hour: 08:30 AM - 09:30 AM Weather: Unknown (17.2 °C)

Peak Hour: 04:30 PM - 05:30 PM Weather: Clear (21.3 °C)

APPENDIX D: Signal Timing Plans (STPs)

Toronto & East York MODE/COMMENT: SAP with PR & TSP* **TransSuite** 1146 CONTROLLER/CABINET TYPE: Peek ATC 1000 / TS2 T1 PREPARED/CHECKED BY: RZ/IA CONFLICT FLASH: Red & Red April 18, 2018 PREPARATION DATE: DESIGN WALK SPEED: 1.0 m/s (FDW based on full crossing at 1.2 m/s) IMPLEMENTATION DATE: May 29, 2018 CHANNEL/DROP 4054/7 3.018.1.2976 CONTROLLER FIRMWARE OFF AM All Other 06:30-09:30 15:30-18:30 **Phase Mode NEMA Phase** Remarks M-F Times (Fixed/Demanded/Callable) Local Plan Pattern 1 Pattern 2 Pattern 3 Split Table Split 1 Split 2 Split 3 WLK NSWK = 7 secs; NSFD = 8 secs FDW EWWK = 7 secs; EWFD = 23 secs MIN NOT USED EBG phase is callable by vehicle and/or pedestrian MAX1 actuation. If a vehicle and/or pedestrian call is AMB received, the maximum EBG would be served. The ALR EWWK & EWFD are only displayed on the signal SPLIT neads if a vehicle and/or pedestrian call is received. Spadina Ave 2 WLK Side Street Passage Time = 3 secs Left-Turn Passage Time = 2 sec
Overlap A & B are only displayed when no NBLA Fixed (NSG / NSTGA) FDW 8 MIN 15 POZ activated by MAX1 46 Request Loop is active. AMB See back for TSP Instructions (max extension of 30 secs in ALR 2 Green/Walk) TSP disabled. 52 52 52 SPLIT f NBLA / NB U-Turn is called without side street demand, signal will terminate SB green & NS Transit 3 WLK FDW green and it will serve NBLA / NB U-Turn and NBG. If MIN there is a late call for side street it would be served in NOT USED MAX1 the next cycle. No issues with Yellow Trap as the AMB advances are fully protected. ALR SPLIT Andrews St WLK FDW 23 Callable by Stopbar loop MIN 30 and/or Pushbutton. MAX1 31 AMB ALR 3 SPLIT 38 WLK 5 NBLA / NB U-Turn Fully Proteced FDW MIN Callable & Extendable MAX1 by Stopbar Loop AMB 3 ALR 3 SPLIT 13 Spadina Ave 6 WLK Fixed (NSG / NSTGA) FDW MIN POZ activated by 15 MAX1 46 Request Loop AMB (max extension of 30 secs in AI R 2 Green/Walk) SPLIT 39 39 39 WLK FDW NOT USED MIN MAX1 AMB ALR SPLIT WLK 8 FDW 23 Activated to allow for TSP MIN 30 MAX1 31 AMB ALR 3 SPI IT 38 38 38 WLK Overlap A **FDW** MIN NBTGA MAX1 (Parent Phase 2) AMB ALR 2 SPLIT WLK Overlap B FDW MIN SBTGA MAX1 (Parent Phase 6) AMB ALR 2 SPLIT CL 90

DISTRICT:

Notes: *Based on request from TTC

LOCATION:

Spadina Ave & St. Andrews St

APPENDIX E:Synchro Traffic Analysis Outputs

HCM Unsignalized Intersection Capacity Analysis 1: Spadina Ave. & Glen Baillie PI./D'Arcy St.

EXAM 09-30-2019

	1	†	<u> </u>	\	Ļ	1	•	—	4	۶	→	•
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
ane Configurations			¥.					₩			₽	
raffic Volume (veh/h)	0	0	.5	0	0	0	0	475	21	0	669	2
-uture Volume (Veh/h)	0	0	2	0	0	0	0	475	51	0	669	2
Sign Control		Stop			Stop			Free			Free	
Grade	č	%0	Š	2	%0	Š	Š	% 5	2	2	%0	0
eak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Hourly flow rate (vph)	0	0	2	0	0	0	0	522	26	0	292	2
Pedestrians		140			316							
-ane Width (m)		3.0			0.0							
Walking Speed (m/s)		1.2			1.2							
Percent Blockage		10			0							
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Jpstream signal (m)											61	
X, platoon unblocked	0.84	0.84	0.84	0.84	0.84		0.84					
/C, conflicting volume	1170	1803	525	1252	1776	909	910			894		
/C1, stage 1 conf vol												
vC2, stage 2 conf vol												
/Cu, unblocked vol	812	1569	41	910	1537	909	501			894		
C, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
C, 2 stage (s)												
F (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
on due one free %	100	100	100	100	100	100	100			100		
cM capacity (veh/h)	191	82	776	180	88	446	811			167		
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2							
/olume Total	2	348	230	512	258							
/olume Left	0	0	0	0	0							
/olume Right	2	0	26	0	2							
SH	176	1700	1700	1700	1700							
/olume to Capacity	0.00	0.20	0.14	0.30	0.15							
Queue Length 95th (m)	0.1	0.0	0.0	0.0	0.0							
Control Delay (s)	6.7	0.0	0:0	0.0	0.0							
ane LOS	V											
Approach Delay (s)	6.7	0.0		0.0								
Approach LOS	A											
ntersection Summary												
Average Delay			0.0									
ntersection Capacity Utilization	ion		29.4%	ਹ	U Level o	ICU Level of Service			⋖			
Analysis Period (min)			15									

17 St. Andrew St. 08-24-2018 BA GROUP

Synchro 9 Report Page 1

HCM Signalized Intersection Capacity Analysis 2: Spadina Ave. & St. Andrew St.

EXAM 09-30-2019

Lane Configurations		1	1	•	—	→	•	
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑	Movement	EBL	EBR	NBL	NBT	SBT	SBR	
4 9 34 441 662 32 32 441 662 32 32 441 662 32 32 441 662 32 32 441 662 32 32 30 3.0 3.0 3.5 3.5 3.0 3.0 3.0 3.5 3.5 3.0 3.	Lane Configurations	>		۳	₩	₩	¥	
1900 900 1	Traffic Volume (vph)	4	6	34	441	692	32	
1900 1900 1900 1900 1900 1900 1900 1900	Future Volume (vph)	4	6	34	441	692	32	
3.0 3.0 3.5 3.5 3.5 3.0 (97) (100 100 100 100 100 100 100 100 100 10	Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
1.00 1.00 5.0 5.0 5.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	Lane Width	3.0	3.0	3.0	3.5	3.5	3.0	
1.00 1.00 0.95 0.95 1.00 0.97 1.00 0.97 1.00 1.00 1.00 0.047 1.00 1.00 1.00 1.00 0.047 1.00 1.00 1.00 1.00 0.047 0.99 0.99 1.00 1.00 1.00 1.00 0.085 0.99 0.95 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.92 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Total Lost time (s)	0.9		2.0	2.0	2.0	2.0	
1.00 1.00 1.00 0.47 1.00 0.00 0.47 1.00 0.00 0.47 1.00 0.00 0.47 1.00 0.00 0.47 1.00 0.00 0.49 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.0	Lane Util. Factor	1.00		1.00	0.95	0.95	1.00	
100 100 100 100 100 100 100 100 100 100	Frpb, ped/bikes	0.91		1.00	1.00	1.00	0.47	
0.99	Flpb, ped/bikes	1.00		1.00	1.00	1.00	1.00	
0.09 0.05 1.00 1.00 1.00 1.00 0.09 0.05 1.00 1.00 1.00 0.09 0.05 1.00 1.00 1.00 0.09 0.09 0.05 1.00 1.00 1.00 0.09 0.03 0.03 0.03 0.03 0.03 0.03 0	Ŧ	0.90		1.00	1.00	1.00	0.85	
1437 1685 3570 710 1979 022 1.00 1.00 1981 393 3570 710 093 093 093 093 093 093 4 10 37 474 744 34 6 0 0 0 0 10 8 0 37 474 744 24 32 124 196 74 744 24 10 8 7 474 744 24 10 8 7 474 744 24 10 8 7 474 744 24 10 9 8 0% 0% 0% 0% 10 0 0 0 0 0 10 0 0 0 0 0 10 0 0 0 0	Flt Protected	0.99		0.95	1.00	1.00	1.00	
0.099 0.22 1.00 1.00 1.00 1.03 0.93 3.570 3.670 3.70 1.00 1.00 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0	Satd. Flow (prot)	1437		1685	3570	3570	710	
1437 393 3570 3570 710 0.93 0.93 0.93 0.93 0.93 0.93 4 10 37 474 744 24 5 0 0 0 0 0 10 8 0 37 474 744 24 10 10 0 0 0 0 0 32 124 196 10 0 0 0 0 0 0 0 0 310 0 0 0 0 0 0 0 0 0 320 0 47.0 34.0 34.0 320 47.0 44.0 34.0 34.0 320 47.0 44.0 34.0 34.0 320 0 180 0 0 0 0 0 0 0 0 0 0 0 0 320 0 180 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Flt Permitted	0.99		0.22	1.00	1.00	1.00	
0.93 0.93 0.93 0.93 0.93 0.93 0.94 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Satd. Flow (perm)	1437		393	3570	3570	710	
4 10 37 474 34 34 8 0 0 0 0 10 8 0 0 0 0 10 8 0 0 0 0 10 8 0 0 0 0 0 10 8 124 196 37 474 744 34 32 124 196 37 474 744 34 30 0% 0% 0% 0% 0% 0% 32 0 0% 0% 0% 0% 32.0 0 0% 0% 0% 32.0 0 0.5 0.5 0.3 0.3 32.0 0.5 0.5 0.3 0.3 0 32.0 0.5 0.5 0.3 0.3 32.0 0.5 0.5 0.3 0.3 32.0 0.5 0.5 0.3 0.3 32.0 0.5 0.5 0.3 0.3 32.0 0.5 0.5 0.3 0.3 32.0 0.5 0.5 0.3 0.3 32.0 0.5 0.5 0.3 0.3 32.0 0.5 0.5 0.3 0.3 32.0 0.5 0.5 0.3 0.3 32.0 0.5 0.5 0.3 0.3 32.0 0.5 0.5 0.3 0.3 32.0 0.5 0.5 0.3 0.3 32.0 0.5 0.5 0.3 0.3 32.0 0.5 0.5 0.3 0.3 32.0 0.5 0.5 0.3 0.3 32.0 0.0 0.0 0.0 0.0 0.0 32.0 0.0 0.0 0.0 0.0 32.0 0.0 0.0 0.0 0.0 33.0 0.0 0.0 0.0 0.0 0.0 34.0 0.0 0.0 0.0 0.0 0.0 0.0 35.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 35.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	
6 0 0 0 0 10 8 1 0 37 474 744 24 124 196 12 10 196 13 10 0% 0% 0% 0% 0% 4 2 6 0% 31.0 46.0 46.0 33.0 33.0 32.0 47.0 47.0 33.0 33.0 32.0 47.0 47.0 34.0 38 510 320 1864 1348 268 510 320 1864 1348 268 510 320 1864 1348 268 510 0.01 0.01 0.03 0.03 0.01 0.01 0.02 0.20 188 11.9 11.8 22.0 180 0.01 0.01 0.01 0.00 1.00 1.00 1.00 1	Adj. Flow (vph)	4	10	37	474	744	34	
8 0 37 474 744 24 32 124 196	RTOR Reduction (vph)	9	0	0	0	0	10	
32 124 196 196 10	Lane Group Flow (vph)	∞	0	37	474	744	24	
10	Confl. Peds. (#/hr)	32	124	196			196	
0% 0% 0% 0% 0% Prod pm+pt NA NA Perm 4 4 2 6 6 31.0 46.0 46.0 33.0 33.0 32.0 47.0 47.0 34.0 34.0 32.0 47.0 47.0 34.0 34.0 0.36 0.52 0.52 0.38 0.38 510 320 180 188 268 501 0.01 6.01 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 1.00 1.03 1.03 1.00 6.0 1.00 1.01 1.00 1.00 6.0 1.00 1.00 1.00 1.00 6.0 1.00 1.00 1.00 1.00 6.0 1.00 1.00 1.00 1.00 6.0 1.00 1.00 1.00 1.00<	Confl. Bikes (#/hr)		10				က	
Prof pm+pt NA NA Perm 4 5 2 6 3.10 46.0 46.0 33.0 33.0 3.20 47.0 47.0 34.0 34.0 3.20 47.0 47.0 34.0 34.0 3.20 47.0 47.0 34.0 3.20 6.0 6.0 6.0 5.10 320 1864 1348 268 5.001 0.012 0.25 0.55 0.09 1.00 1.00 1.00 1.00 0.1 0.1 0.2 0.2 0.5 0.50 1.8 11.9 11.8 22.0 18.0 1.00 1.00 1.00 1.00 0.1 0.7 0.3 1.6 0.7 18.8 12.7 12.2 23.4 18.7 19.0 HCM 2000 Level of Service 3.0 50.0 Sum of lost time (s) initization 62.4% ICU Level of Service	Heavy Vehicles (%)	%0	%0	%0	%0	%0	%0	
4 5 2 6 6 31.0 46.0 33.0 33.0 32.0 47.0 47.0 34.0 34.0 0.36 0.52 0.52 0.38 0.38 7.0 6.0 6.0 6.0 6.0 510 320 1864 1348 268 501 320 1864 1348 268 502 0.01 0.01 0.03 103 119 118 22.0 18.0 104 1.00 1.00 1.00 105 1.00 1.00 1.00 107 1.01 1.02 23.4 18.8 12.7 23.4 18.8 12.7 23.4 18.8 12.7 23.4 19.0 10.0 10.0 10.0 10.0	Turn Type	Prot		pm+pt	NA	NA	Perm	
31.0 46.0 33.0 33.0 33.0 32.0 33.0 33.0 33.0 33	Protected Phases	4		2	2	9		
31.0 46.0 46.0 33.0 33.0 32.0 32.0 47.0 47.0 34.0 34.0 34.0 34.0 34.0 34.0 34.0 34	Permitted Phases			2			9	
32.0 47.0 47.0 34.0 34.0 34.0 32.0 33.8 0.52 0.52 0.58 0.38 0.38 0.50 0.52 0.58 0.38 0.38 0.50 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Actuated Green, G (s)	31.0		46.0	46.0	33.0	33.0	
0.36 0.52 0.38 0.38 0.38 0.30 0.50 0.50 0.50 0.50 0.50 0.50 0.50	Effective Green, g (s)	32.0		47.0	47.0	34.0	34.0	
70 60 60 60 60 60 60 60 60 60 60 60 60 60	Actuated g/C Ratio	0.36		0.52	0.52	0.38	0.38	
510 320 1864 1348 268 260 2001 2013 2021	Clearance Time (s)	7.0		0.9	0.9	0.9	0.9	
c001 001 c0.13 c0.21 005 005 005 005 0009 18.8 11.9 11.8 22.0 18.0 1.00 1.00 1.00 1.00 1.00 1.01 0.7 0.3 1.6 0.7 18.8 12.7 23.6 18.7 18.8 12.7 12.2 23.6 18.7 18.8 12.7 23.6 18.7 19.9 19.0 HCM 2000 Level of Service apacity ratio 0.30 Sum of lost time (s) (s) 50.0 Sum of lost time (s)	Lane Grp Cap (vph)	510		320	1864	1348	268	
0.01 0.02 0.25 0.55 0.03 18.8 11.9 11.8 22.0 18.0 1.00 1.00 1.00 1.00 1.00 0.1 0.7 0.3 1.6 0.7 18.8 12.7 23.6 18.7 B B C B 18.8 12.2 23.4 B 12.2 23.4 B 12.2 23.4 B 12.2 23.4 B 12.2 23.4 B 13.9 C B 14.0 D/M 2000 Level of Service	v/s Ratio Prot	c0.01		0.01	c0.13	c0.21		
0.01 0.12 0.25 0.55 0.09 18.8 11.9 11.8 22.0 18.0 0.1 0.0 1.00 1.00 1.00 1.00 1.01 0.7 0.3 1.6 0.7 18.8 12.7 12. 23.6 18.7 18.8 12.7 23.4 8.7 19.0 HCM 2000 Level of Service apacity ratio 0.30 Sum of lost time (s) illization 6.2.4% ICU Level of Service	v/s Ratio Perm			0.02			0.03	
188 11.9 11.00 1.00 1.00 1.00 1.00 1.00 1.0	v/c Ratio	0.01		0.12	0.25	0.55	0.09	
1.00 1.100 1	Uniform Delay, d1	18.8		11.9	11.8	22.0	18.0	
0.1 0.7 0.3 1.6 0.7 18.8 12.7 12.2 23.6 18.7 18.8 12.2 23.4 18.9 17.0 E B 12.2 23.4 19.0 HCM 2000 Level of Service apacity ratio 0.30 Sum of lost time (s) (s) 90.0 Sum of lost time (s) 11 15 ICU Level of Service	Progression Factor	00:1		00.1	00.1	00.1	00.1	
18.8 12.7 23.4 18.7 18.8 12.2 23.4 18.7 18.8 12.2 23.4 18.7 19.0 HCM 2000 Level of Service apacity ratio 0.30 Sum of lost time (s) filization 6.2.4% ICU Level of Service 15.5	Incremental Delay, d2	0.1		0.7	0.3	1.6	0.7	
B	Delay (s)	18.8		17.7	17.7	23.6	18./	
18.8 12.2 23.4 B	Level of Service	В		В	В	ပ	В	
B C y 19.0 HCM 2000 Level of Service apacity ratio 0.30 Sum of lost time (s) ilitation 62.4% ICU Level of Service 15 ICU Level of Service	Approach Delay (s)	18.8			12.2	23.4		
y 19.0 HCM 2000 Level of Service apacity ratio 0.30 Sum of lost time (s) 90.0 Sum of lost time (s) Ilization 62.4% ICU Level of Service 15	Approach LOS	В			В	O		
y 19.0 HCM 2000 Level of Service apacity ratio 0.30 Sum of lost time (s) 90.0 Sum of lost time (s) Illization 62.4% ICU Level of Service 15	Intersection Summary							
apacity ratio 0.30 Sum of lost time (s) (s) 90.0 Sum of lost time (s) Ilization 62.4% ICU Level of Service	HCM 2000 Control Delay			19.0	Ĭ	CM 2000	Level of Service	8
(s) 90.0 Sum of lost time (s) 11ization 62.4% ICU Level of Service 15	HCM 2000 Volume to Capa	acity ratio		0.30				1
tilization 62.4% ICU Level of Service 15	Actuated Cycle Length (s)	and land		90.0	S	um of lost	time (s)	16.0
15	Intersection Capacity Utiliza	ation		62.4%	೨	U Level o	f Service	В
C. Critical I and Groun	Analysis Period (min)			12				
Sport Falls of the second seco	c Critical Lane Group							

17 St. Andrew St. 08-24-2018 BA GROUP

HCM Unsignalized Intersection Capacity Analysis 3: Site Access & St. Andrew St.

																																								A	
•	NBR		0	0			0.92	0										14			14	6.2		3.3	100	1072														of Service	
√	WBT NBL	₩	0 64		Free Stop		0.92 0.92	70 0						None		93		88			88	6.4		3.5	100	917														ICU Level of Service	
•	WBL		2	2				2						_				14			14	4.1		2.2	100	1617	NB 1	0	0	0	1700	0.00	0:0	0:0	A	0.0	V		0.2	8.3%	15
<i>></i>	EBR		0	0			0.92	0																			WB1	72	2	0	1617	0.00	0.0	0.2	A	0.2					
†	EBT	43	13	13	Free	%0	0.92	14						None													EB 1	14	0	0	1700	0.01	0:0	0.0		0.0				ation	
	Movement	Lane Configurations	Traffic Volume (veh/h)	Future Volume (Veh/h)	Sign Control	Grade	Peak Hour Factor	Hourly flow rate (vph)	Pedestrians	Lane Width (m)	Walking Speed (m/s)	Percent Blockage	Right turn flare (veh)	Median type	Median storage veh)	Upstream signal (m)	pX, platoon unblocked	vC, conflicting volume	vC1, stage 1 conf vol	vC2, stage 2 conf vol	vCu, unblocked vol	tC, single (s)	tC, 2 stage (s)	tF (s)	p0 queue free %	cM capacity (veh/h)	Direction, Lane #	Volume Total	Volume Left	Volume Right	cSH	Volume to Capacity	Queue Length 95th (m)	Control Delay (s)	Lane LOS	Approach Delay (s)	Approach LOS	Intersection Summary	Average Delay	Intersection Capacity Utilization	Analysis Period (min)

HCM Unsignalized Intersection Capacity Analysis 4: Laneway/TPA Access & St. Andrew St.

EXAM 09-30-2019

EXAM 09-30-2019

	1	†	/	-	Ļ	4	•	←	•	۶	→	•
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	0	13	0	2	21	41	0	0	0	0	0	0
Future Volume (Veh/h)	0	13	0	2	21	41	0	0	0	0	0	0
Sign Control		Free			Free			Stop			Stop	
Grade		%0			%0			%0			%0	
Peak Hour Factor	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81
Hourly flow rate (vph)	0	16	0	2	26	21	0	0	0	0	0	0
Pedestrians		∞			70			21			43	
Lane Width (m)		3.5			3.5			3.5			3.5	
Walking Speed (m/s)		1.2			1.2			1.2			1.2	
Percent Blockage		-			2			2			e	
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)					115							
pX, platoon unblocked												
vC, conflicting volume	120			37			100	161	22	134	136	102
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	120			37			100	161	22	134	136	102
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
po dueue free %	100			100			100	100	100	100	100	100
cM capacity (veh/h)	1429			1560			830	969	982	797	719	919
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	16	4	0	0								
Volume Left	0	2	0	0								
Volume Right	0	21	0	0								
CSH	1429	1560	1700	1700								
Volume to Capacity	0.00	0.00	0.00	0.00								
Queue Length 95th (m)	0.0	0.0	0.0	0.0								
Control Delay (s)	0.0	0.2	0.0	0.0								
Lane LOS		A	V	A								
Approach Delay (s)	0.0	0.2	0.0	0.0								
Approach LOS			A	V								
Intersection Summary												
			0									
Average Delay			7.00	2					<			
Intersection Capacity Utilization	uo		26.9%	5	U Level c	ICU Level of Service			¥			
Analysis Period (min)			15									

17 St. Andrew St. 08-24-2018 BA GROUP

HCM Unsignalized Intersection Capacity Analysis 5: Kensington Ave. & St. Andrew St.

																																								A	
→	SBT	₩	9	9	Free	%0	0.64	6	27	3.5	1.2	2		None																										ICU Level of Service	
۶	SBL		13	13			0.64	20										47			47	4.1		2.2	66	1522														U Level	
•	NBR		0	0			0.64	0																																2	
←	NBT		0	0	Free	%0	0.64	0	23	0.0	1.2	0		None																									7.4	27.2%	15
4	WBR		0	0			0.64	0										74			74	6.2		3.3	100	940	SB1	56	20	0	1522	0.01	0.3	5.1	⋖	5.1					
-	WBL	r	21	21	Stop	%0	0.64	33	47	3.0	1.2	m						119			119	6.4		3.5	96	842	WB 1	33	33	0	842	0.04	1.0	9.2	V	9.2	A			_	
	Movement	Lane Configurations	Traffic Volume (veh/h)	Future Volume (Veh/h)	Sign Control	Grade	Peak Hour Factor	Hourly flow rate (vph)	Pedestrians	Lane Width (m)	Walking Speed (m/s)	Percent Blockage	Right turn flare (veh)	Median type	Median storage veh)	Upstream signal (m)	pX, platoon unblocked	vC, conflicting volume	vC1, stage 1 conf vol	vC2, stage 2 conf vol	vCu, unblocked vol	tC, single (s)	tC, 2 stage (s)	tF (s)	p0 queue free %	cM capacity (veh/h)	Direction, Lane #	Volume Total	Volume Left	Volume Right	cSH	Volume to Capacity	Queue Length 95th (m)	Control Delay (s)	Lane LOS	Approach Delay (s)	Approach LOS	Intersection Summary	Average Delay	Intersection Capacity Utilization	Analysis Period (min)

17 St. Andrew St. 08-24-2018 BA GROUP Page 5

HCM Unsignalized Intersection Capacity Analysis 1: Spadina Ave. & Glen Baillie PI./D'Arcy St.

EXAM 09-30-2019

EXPM 09-30-2019

	۸.	†	>	>	ţ	4	€	←	•	۶	→	*
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
-ane Configurations			¥C					\			₩	
raffic Volume (veh/h)	0	0	-	0	0	0	0	623	38	0	202	_
-uture Volume (Veh/h)	0	0	-	0	0	0	0	623	38	0	202	τ-
Sign Control		Stop			Stop			Free			Free	
Grade		%0			%0			%0			%0	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	0	0		0	0	0	0	663	40	0	537	-
Pedestrians		705			936							
-ane Width (m)		3.0			0.0							
Walking Speed (m/s)		1.2			1.2							
Percent Blockage		49			0							
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Jpstream signal (m)											19	
oX, platoon unblocked	06:0	06:0	06:0	06:0	06.0		06:0					
vC, conflicting volume	1574	2882	974	1888	2862	1288	1243			1639		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1413	2868	745	1763	2846	1288	1045			1639		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
.C, 2 stage (s)												
F(s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
% eauf enend 0d	100	100	66	100	100	100	100			100		
cM capacity (veh/h)	78	8	166	30	00	158	309			401		
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2							
Volume Total	-	442	261	358	180							
Volume Left	0	0	0	0	0							
Volume Right	-	0	40	0	-							
SSH	166	1700	1700	1700	1700							
Volume to Capacity	0.01	0.26	0.15	0.21	0.11							
Queue Length 95th (m)	0.1	0.0	0.0	0.0	0.0							
Control Delay (s)	26.9	0.0	0.0	0.0	0.0							
Lane LOS	O											
Approach Delay (s)	26.9	0.0		0.0								
Approach LOS	D											
ntersection Summary												
Average Delay			0.0									
intersection Capacity Utilization	tion		24.0%	೨	U Level o	ICU Level of Service			⋖			
Analysis Period (min)			15									

17 St. Andrew St. 08-24-2018 BA GROUP

HCM Signalized Intersection Capacity Analysis 2: Spadina Ave. & St. Andrew St.

																																									20	16.0		A
•	SBR	¥-	35	35	1900	3.0	2.0	1.00	0.10	1.00	0.85	1.00	147	1.00	147	0.92	38	16	22	1091	7	%0	Perm		9	33.0	34.0	6.0	25		c0.15	0.40	20.5	1.00	20.0 40.E	40.3	۵				HCM 2000 Level of Service	lime (s)		Service
→	NBT SBT				1900 1900				1.00 1.00				. ,		3570 3570		654 515		654 515				NA NA	2 6			47.0 34.0		-						0.5 0.8		20	B			HCM 2000 L	Sum of lost time (s)		ICU Level of Service
•	NBL	<u>.</u>	21	21	1900								. ,			0.92	23	0		1091		%0	pm+pt	2	2		0.50										2				17.5	0.06		21.6%
*	EBL EBR	>	42 32		<u>-</u>	3.0 3.0	0.9	1.00	0.91	1.00	0.94	0.97	1475	0.97	1475	0	46 35			193 222		%0 %0	Prot	4		31.0	32.0	7.0	524	c0.04		0.11	19.5	1.00	0.4	7.7	100	, e			Ç			
,	Movement	Lane Configurations	Traffic Volume (vph)	(fc	(ldud/					Flpb, ped/bikes 1		Flt Protected 0	Satd. Flow (prot) 14	Flt Permitted 0		r, PHF	Adj. Flow (vph)	RTOR Reduction (vph)	vph)			icles (%)		Protected Phases	Permitted Phases		2)	Actuated g/C Ratio		Б	Perm				ıtal Delay, d2	Delay (s)	(3)		Intercoction Cummons	mersection summaly	HCM 2000 Control Delay HCM 2000 Volume to Canacity ratio	Actuated Cycle Length (s)	()	Intersection Capacity Utilization

17 St. Andrew St. 08-24-2018 BA GROUP

Synchro 9 Report Page 2

17 St. Andrew St. 08-24-2018 BA GROUP

HCM Unsignalized Intersection Capacity Analysis 3: Site Access & St. Andrew St.

EXPM 09-30-2019

EXPM 09-30-2019

	~		8	80			2	6										72			2	2		3	6	9														lice	
•	NBR						0.92	_										7			72	6.2		3.3	66	966														of Serv	
•	NBL	>	4	4	Stop	%0	0.92	4										140			140	6.4		3.5	100	824														ICU Level of Service	
Ļ	WBT	4	20	20	Free	%0	0.92	54						None		93																								2	
-	WBL		9	9			0.92	7										72			72	4.1		2.2	100	1541	NB 1	13	4	6	947	0.01	0.3	8.9	A	8.9	A		1.2	17.7%	15
<u> </u>	EBR		0	0			0.92	0																			WB 1	19	7	0	1541	0.00	0.1	0.9	V	0.9					
†	EBT	æ	99	99	Free	%0	0.92	72						None													EB 1	72	0	0	1700	0.04	0.0	0.0		0.0				ization	
	Movement	Lane Configurations	Traffic Volume (veh/h)	Future Volume (Veh/h)	Sign Control	Grade	Peak Hour Factor	Hourly flow rate (vph)	Pedestrians	Lane Width (m)	Walking Speed (m/s)	Percent Blockage	Right turn flare (veh)	Median type	Median storage veh)	Upstream signal (m)	pX, platoon unblocked	vC, conflicting volume	vC1, stage 1 conf vol	vC2, stage 2 conf vol	vCu, unblocked vol	tC, single (s)	tC, 2 stage (s)	tF (s)	bo dnene tree %	cM capacity (veh/h)	Direction, Lane #	Volume Total	Volume Left	Volume Right	CSH	Volume to Capacity	Queue Length 95th (m)	Control Delay (s)	Lane LOS	Approach Delay (s)	Approach LOS	Intersection Summary	Average Delay	Intersection Capacity Utilization	Analysis Period (min)

HCM Unsignalized Intersection Capacity Analysis 4: Laneway/TPA Access & St. Andrew St.

•	SBR		6	6			0.85	=										316			316	6.2		3.3	86	577															
→	SBT	4	0	0	Stop	%0	0.85	0	247	3.5	1.2	20						478			478	6.5		4.0	100	344															
۶	SBL		43	43			0.85	21										382			382	7.1		3.5	82	341															
•	NBR		-	-			0.85											229			229	6.2		3.3	100	982														A	
←	NBT	4	0	0	Stop	%	0.85	0	150	3.5	1.2	12						486			486	6.5		4.0	100	340															
•	NBL		_	-			0.85	-										256			256	7.1		3.5	100	460															
4	WBR		14	14			0.85	16																																Service	
Ļ	WBT	4	40	40	Free	%	0.85	47	23	3.5	1.2	4		None		115																								ICU Level of Service	
\	WBL		0	0			0.85	0										176			176	4.1		2.2	100	1241	SB 1	62	21	Ξ	368	0.17	4.8	16.8	O	16.8	O			ਹ	
~	EBR		0	0			0.85	0																			NB 1	2	-	-	551	0.00	0.1	11.6	В	11.6	В		6.9	31.6%	15
†	EBT	÷	22	22	Free	%	0.85	56	14	3.5	1.2	-		None													WB1	63	0	16	1241	0.00	0.0	0.0		0.0					
4	EBL		0	0			0.85	0										310			310	4.1		2.2	100	1009	EB 1	79	0	0	1009	0.00	0.0	0.0		0.0				ر	
	Movement	Lane Configurations	Traffic Volume (veh/h)	Future Volume (Veh/h)	Sign Control	Grade	Peak Hour Factor	Hourly flow rate (vph)	Pedestrians	Lane Width (m)	Walking Speed (m/s)	Percent Blockage	Right turn flare (veh)	Median type	Median storage veh)	Upstream signal (m)	pX, platoon unblocked	vC, conflicting volume	vC1, stage 1 conf vol	vC2, stage 2 conf vol	vCu, unblocked vol	tC, single (s)	tC, 2 stage (s)	tF (s)	p0 queue free %	cM capacity (veh/h)	Direction, Lane #	Volume Total	Volume Left	Volume Right	cSH	Volume to Capacity	Queue Length 95th (m)	Control Delay (s)	Lane LOS	Approach Delay (s)	Approach LOS	Intersection Summary	Average Delay	Intersection Capacity Utilization	Analysis Period (min)

HCM Unsignalized Intersection Capacity Analysis 5: Kensington Ave. & St. Andrew St.

EXPM 09-30-2019

EXPM 09-30-2019

Micmont	\	√	←	◆	<u>,</u>	→	
viovement	WBL	WBK	NBI	NBK	SBL	351	
-ane Configurations	-					ভ	
raffic Volume (veh/h)	20	0	0	0	22	28	
Future Volume (Veh/h)	20	0	0	0	22	28	
Sign Control	Stop		Free			Free	
Grade	%0		%0			%0	
Peak Hour Factor	0.80	0.80	0.80	0.80	0.80	0.80	
Hourly flow rate (vph)	63	0	0	0	28	35	
Pedestrians	224		99			247	
-ane Width (m)	3.0		0.0			3.5	
Nalking Speed (m/s)	1.2		1.2			1.2	
Percent Blockage	16		0			20	
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)							
oX, platoon unblocked							
vC, conflicting volume	381	471			224		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	381	471			224		
C, single (s)	6.4	6.2			4.1		
C, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
oo dnene tree %	88	100			86		
cM capacity (veh/h)	515	403			1146		
Direction, Lane #	WB 1	SB 1					
Volume Total	63	63					
Volume Left	63	28					
/olume Right	0	0					
CSH	515	1146					
Volume to Capacity	0.12	0.02					
Queue Length 95th (m)	3.3	9.0					
Control Delay (s)	13.0	3.8					
Lane LOS	В	V					
Approach Delay (s)	13.0	3.8					
Approach LOS	В						
Intersection Summary							
Average Delay			8.4				
Intersection Capacity Utilization	uo		33.3%	2	ICU Level of Service	f Service A	
Analysis Period (min)			15				

17 St. Andrew St. 08-24-2018 BA GROUP

HCM Unsignalized Intersection Capacity Analysis 1: Spadina Ave. & Glen Baillie PI./D'Arcy St.

	4	†	~	-	↓	4	•	←	•	۶	→	*
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			*					₩			₽ ₽	
Traffic Volume (veh/h)	0	0	2	0	0	0	0	486	21	0	725	2
Future Volume (Veh/h)	0	0	2	0	0	0	0	486	21	0	725	2
Sign Control		Stop			Stop			Free			Free	
Grade		%0			%0			%0			%0	
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Hourly flow rate (vph)	0	0	2	0	0	0	0	534	26	0	797	2
Pedestrians		140			316							
Lane Width (m)		3.0			0.0							
Walking Speed (m/s)		1.2			1.2							
Percent Blockage		10			0							
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)											19	
oX, platoon unblocked	0.83	0.83	0.83	0.83	0.83		0.83					
vC, conflicting volume	1205	1844	540	1278	1817	611	626			906		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
/Cu, unblocked vol	833	1604	53	922	1572	611	512			906		
C, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
IC, 2 stage (s)												
F (S)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
oo dnene tree %	100	100	100	100	100	100	100			100		
cM capacity (veh/h)	183	8	781	175	83	442	796			759		
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB2							
Volume Total	2	356	234	531	268							
Volume Left	0	0	0	0	0							
/olume Right	2	0	29	0	2							
SSH	781	1700	1700	1700	1700							
Volume to Capacity	0.00	0.21	0.14	0.31	0.16							
Queue Length 95th (m)	0.1	0.0	0.0	0.0	0.0							
Control Delay (s)	9.6	0.0	0.0	0.0	0.0							
-ane LOS	V											
Approach Delay (s)	9.6	0.0		0.0								
Approach LOS	A											
Intersection Summary												
Average Delay			0.0									
Intersection Capacity Utilization	lon		30.1%	⊇	U Level o	ICU Level of Service			⋖			
Analysis Period (min)			15									

17 St. Andrew St. 08-24-2018 BA GROUP

Synchro 9 Report Page 1

HCM Signalized Intersection Capacity Analysis 2: Spadina Ave. & St. Andrew St.

FBAM 09-30-2019

FBAM 09-30-2019

Movement Lane Configurations Traffic Volume (yph) Future Volume (yph) Ideal Flow (ychp) It Peanitted Sard Flow (ychp)	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	EBR	NBL 34	NBT	SBT ★	SBR	
Traffic Volume (yph) Traffic Volume (yph) Future Volume (yph) Icar How (yph) Lane Wildth Total Lost finne (s) Lane Util. Factor Fipb, pedfolkes Fipt, pedfolkes Fit Fit Protected Sadt Flow (pm) Fit Permitted Sadt Flow (pm) Fit Permitted Sadt Andre (pm)	3.0 6.0 1.00 0.91 1.00	0	<u> </u>	‡	‡	¥	
Traffic Volume (vph) Future Volume (vph) Idea Flow (vphp) Lane Wild Factor Total Lost lime (s) Lane Util Extor Figh, pedfolies Fit Fit Permitted Sad. Flow (pem) Peak-hour factor PHF Pedis Flow (ph) RT OR Reduction (vph)	3.0 3.0 6.0 1.00 1.00 1.00	0	2.4			_	
Future Volume (vph) Idea Flow (vphpl) Lane Wilt Factor Frib, ped/bikes Fit ped/bikes Fit Pedected Sald. Flow (pem) Peak-hour factor PHF Peak-hour factor PHF RICOR Reduction (vph) RI OR Reduction (vph)	3.0 3.0 6.0 1.00 1.00 1.00	,	24	452	718	32	
ideas How (vptp) Lane Width Total Lost line (s) Lane Util Factor Fig., ped/bikes Fig., ped/bikes Fit Protected Said. Flow (pcn) Fit Pemilted Said. Flow (pcm) RI Pemilted Said. Flow (pcm) RI Pemilted Said. Flow (pcm) RI REAUT PHF ROR Reduction (vph) RTOR Reduction (vph)	3.0 3.0 6.0 1.00 1.00	6	34	452	718	32	
Larle Wider I Total Lost time (s) Land Util. Factor Fipb, ped/bikes Fipb, ped/bikes Fit Protected Satd. Flow (prot) Fit Permitted Satd. Flow (perm) Peak-hour factor, PHF Adi, Flow (tyth) RTOR Reduction (vph)	3.0 6.0 1.00 1.00	1900	1900	1900	1900	1900	
india Lost line (s) Lane Util, Factor Fipb, pedbikes Fin Fit Fit Protected Sadt Flow (prot) Fit Permitted Sadt Flow (perm) Fit Pow (tph) RT OR Reduction (vph)	0.91	3.0	3.0	3.5	3.5	3.0	
The part before the control of the c	1.00		2.0	0.0	0.0	1.00	
Fig., pad/bikes Fit Fit Protected Sad. Flow (pro) Fit Permitted Sad. Flow (perm) Factor for permitted Adj. Flow (pth) RT OR Reduction (vph)	1.00		1.00	1.00	1.00	0.47	
Fit it Protected Fit Protected Sard. Flow (pro.) Fit Permitted Sard. Flow (perm.) Peak-hour factor, PHF Adj. Flow (pph) RT OR Reduction (vph)	060		1.00	1.00	1.00	1.00	
Fit Protected Safu. Flow (prot) Fit Permitted Safu. Flow (perm) Peak-hour factor, PHF Adj. Flow (vph) RTOR Reduction (vph)			1.00	1.00	1.00	0.85	
Satd Flow (prol) Fit Permitted Satd Flow (perm) Peak-hour factor, PHF Adj. Flow (pph) RTOR Reduction (vph)	0.99		0.95	1.00	1.00	1.00	
Fit Permitted Satd. Flow (perm) Peak-hour factor, PHF Adj. Flow (vph) RTOR Reduction (vph)	1437		1685	3570	3570	710	
Satd. Flow (perm) Peak-hour factor, PHF Adj. Flow (vph) RTOR Reduction (vph)	0.99		0.21	1.00	1.00	1.00	
Peak-hour factor, PHF Adj. Flow (vph) RTOR Reduction (vph)	1437		370	3570	3570	710	
Adj. Flow (vph) RTOR Reduction (vph)	0.93	0.93	0.93	0.93	0.93	0.93	
RTOR Reduction (vph)	4	10	37	486	772	34	
	9	0	0	0	0	6	
Lane Group Flow (vph)	8	0	37	486	772	25	
Confl. Peds. (#/hr)	32	124	196			196	
Confl. Bikes (#/hr)		10			100	e 3	
Heavy Vehicles (%)	%0	%	%	%0	%	%0	
Turn Type	Prot		pm+pt	NA	¥	Perm	
Protected Phases	4		വ	2	9		
Permitted Phases			2			9	
Actuated Green, G (s)	31.0		46.0	46.0	33.0	33.0	
Effective Green, g (s)	32.0		47.0	47.0	34.0	34.0	
Actuated g/C Ratio	0.36		0.52	0.52	0.38	0.38	
Clearance Time (s)	7.0		0.9	0.9	0.9	0.9	
Lane Grp Cap (vph)	210		310	1864	1348	268	
v/s Ratio Prot	c0.01		0.01	c0.14	c0.22		
Ws Katlo Perm	20		0.05	700	1	0.03	
Wc Kallo	10.01		17.1	11.0	70:0	10.0	
Dromession Factor	100		1.00	1 00	1 00	100	
Incremental Delay d2	0.0		200	0 3	20.	20.1	
Delay (s)	18.8		12.9	12.2	24.0	18.7	
Level of Service	2		æ	~	C	-	
Approach Delay (s)	18.8			12.3	23.8		
Approach LOS	В			В	ပ		
Intersection Summary							
HCM 2000 Control Delay			19.3	윈	M 2000 L	HCM 2000 Level of Service	8
HCM 2000 Volume to Capacity ratio	ratio		0.31				
Actuated Cycle Length (s)			0.06	Sui	Sum of lost time (s)	time (s)	16.0
Intersection Capacity Utilization	_		62.4%	20	ICU Level of Service	Service	В
Analysis Period (min)			12				
c Critical Lane Group							

17 St. Andrew St. 08-24-2018 BA GROUP

HCM Unsignalized Intersection Capacity Analysis 3: Site Access & St. Andrew St.

None None None None None None None None		† 8	<u>مر</u>	\	↓ In the leaf of the leaf o	√ §	◆ GN	
13		₽ •	EBK	WBL	WBI	NBL	INBK	
Free Free Stop 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92		<u>*</u> %	0	2	4	-0	0	
Free Slop 0.92 0.92 0.92 0.92 14 0 2 70 0.0 None None Slop 14 88 14 4.1 6.4 6.2 2.2 3.5 3.3 100 100 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		13	0	2	64	0	0	
0.92		Free			Free	Stop		
None None None 93 092 092 092 092 092 092 092 092 092 092		%0			%0	%0		
None None 93 14 0 2 70 0 0 0 93 14 88 14 4.1 64 62 2.2 3.5 3.3 100 100 100 100 101 700 0		0.92	0.92	0.92	0.92	0.92	0.92	
None None 93 14 88 14 14 6.4 6.2 2.2 3.5 3.3 100 100 100 100 100 100 0 0 0 0 0 0 0 0		14	0	7	70	0	0	
None None 93 14 88 14 14 88 14 4.1 6.4 6.2 2.2 3.5 3.3 100 100 100 1100 100 0 1700 1617 917 1072 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00								
None None 93 14 88 14 4.1 6.4 6.2 2.2 3.5 3.3 100 100 100 101 114 72 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								
None None 93 14 88 14 14 64 62 22 35 33 100 100 100 114 72 0								
None None 93 14 88 14 14 88 14 4.1 6.4 6.2 2.2 3.5 3.3 100 100 100 1617 917 1072 1670 167 0 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00								
None None 93 14 88 14 14 88 14 4.1 6.4 6.2 2.2 3.5 3.3 100 100 100 101 0.00 0.00 0.01 0.00 0.00								
93 14 88 14 4.1 6.4 6.2 2.2 3.5 3.3 100 100 100 1 14 72 0 1 14 72 0 1 10 100 000 0 0 0 0 1 1700 1617 1700 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	_	Vone			None			
93 14 88 14 14 88 14 4.1 6.4 6.2 2.2 3.5 3.3 100 100 100 0.01 0.00 0.00 0.01 0.00 0.00								
14 88 14 4.1 4.1 6.4 6.2 6.2 6.2 6.2 6.2 6.4 6.2 6.2 6.4 6.2 6.2 6.4 6.2 6.2 6.4 6.2 6.2 6.4 6.2 6.2 6.4 6.2 6.2 6.4 6.2 6.2 6.4 6.2 6.2 6.4 6.2 6.2 6.4 6.2 6.2 6.4 6.2 6.2 6.4 6.2 6.2 6.4 6.2 6.2 6.4 6.2 6.2 6.2 6.4 6.4 6					93			
14 88 14 4.1 6.4 6.2 2.2 3.5 3.3 100 100 100 11700 16.17 1700 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0								
H 88 14 4.1 6.4 6.2 2.2 3.5 3.3 100 100 17700 1617 917 1072 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00				14		88	14	
14 88 14 4.1 4.1 6.4 6.2 6.2 6.2 6.2 6.2 6.4 6.2 6.4 6.2 6.4 6.2 6.4 6.2 6.4 6.4 6.2 6.4 6								
H4 88 14 4.1 6.4 6.2 2.2 3.5 3.3 100 100 100 1617 917 1072 10 2 0 1700 1617 1070 0.01 0.00 0.00 0.0 0.0 0.00 0.0 0.0 0.0 0.0 0.0								
## 64 62 22 3.5 3.3 100 100 100 1 14 72 0 1 10 0 0 0 1 1700 1617 1700 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1				14		88	14	
22 3.5 3.3 100 100 1617 917 1072 0 2 0 0 0 0 1700 1617 7700 0.01 0.00 0.00 0.00 0				4.1		6.4	6.2	
22 35 33 100 100 1617 917 1072 14 72 0 0 0 0 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00								
100 100 100 100 100 100 101 101 101 101				2.2		3.5	3.3	
HB1 WB1 ND1 1072 EB1 WB1 NB1 1 72 0 0 0 0 0 1700 1617 1700 0.01 0.00 0.00 0.00 0.0 0.00 0.00 0.0 0.00 0.00 0.0 0.				100		100	100	
EB1 WB1 NB1 14 72 0 0 2 0 0 0 0 1700 1617 1700 0.01 0.00 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0				1617		917	1072	
14 72 0 0 2 0 0 0 0 1700 1617 1700 0.01 0.00 0.00 0.0 0.0 0.0 0.0 0.2 0.0 A A A A A A A A A A A A A A A A A A A		EB 1	WB1	NB 1				
0 2 0 0 0 0 17000 1617 17000 0.01 0.00 0.00 0.0 0.2 0.0 0.0 0.2 0.0 0.0 0.2 0.0 0.0 0.2 0.0 0.0 0.3 0.0 0.0 0.3 0.0 10 0.3 0.0 10 0.3 0.0 10 0.3 0.0		14	72	0				
1700 1617 1700 0.01 0.00 0.00 0.0 0.0 0.00 0.0 0.2 0.0 0.0 0.2 0.0 0.0 0.2 A A A 0.0 0.2 A A A A A A A A A A A A A A A A A A A		0	2	0				
1700 1617 1700 0.01 0.00 0.00 0.00 0.0 0.0 0.0 0.2 0.0 0.0 0.2 0.0 0.0 0.2 0.0 0.0 0.2 0.0 0.0 0.2 0.0 10 0.2 0.0 10 0.2 0.0 10 0.2 0.0 10 0.2 0.0		0	0	0				
0.01 0.00 0.00 0.0 0.0 0.0 0.0 0.2 0.0 A A A A A A A A A A A A A A A A A A A		1700	1617	1700				
00 00 00 0.0 0.2 0.0 0.0 0.2 0.0 A 0.0 0.2 0.0 0.2 0.2 0.2 15 15 15 15 15 15 15 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18		0.01	0.00	0.00				
0.0 0.2 0.0 A A A 0.0 0.2 0.0 A A 0.2 CU Level of Service 15	<u>ج</u>	0.0	0.0	0.0				
0.0 0.2 0.0 A A 0.2 CU Level of Service 15		0.0	0.2	0.0				
0.0 0.2 0.0 A 0.2 8.3% ICU Level of Service 15			Ø	V				
0.2 8.3% ICU Level of Service 15		0.0	0.2	0:0				
0.2 8.3% ICU Level of Service 15				A				
0.2 8.3% ICU Level of Service 15								
8.3% ICU Level of Service 15				0.0				
15	Jtilization			8.3%	2	J Level of	Service	A
				15				

17 St. Andrew St. 08-24-2018 BA GROUP

Synchro 9 Report Page 3

HCM Unsignalized Intersection Capacity Analysis 4: Laneway/TPA Access & St. Andrew St.

FBAM 09-30-2019

FBAM 09-30-2019

102 3.3 Stop 0% 0 0 43 3.5 1.2 4.0 136 136 0.81 134 134 3.5 100 767 0.81 3.3 0 0 22 57 0 Stop 0 0% 0.81 0 21 3.5 3.5 2 4.0 100 696 161 161 0.81 100 3.5 100 830 0.81 None 115 2.2 0.81 37 37 0 0 0.00 0.00 0.0 A A A 0.81 0 0 0.00 0.00 0.0 A A A A 00 79 2 51 1560 0.00 0.0 0.2 A 13 13 0.81 16 1 None 0.81 2.2 100 1429 Direction, Lane #
Volume Total
Volume Left
Volume Right
cSH
Volume Right
CBH
Coucue Length 95th (m)
Couron Loday (s)
Lane LOS Grade
Peak Hour Factor
Peak Hour Factor
Peux Houry flow rate (vph)
Pedeskirans
Lane Width (m)
Walking Speed (m/s)
Walking Speed (m/s)
Wedian type
Median type
Median type
Median type
Ac, conflicting volume
vC1, stage 1 conf vol
vC2, stage 2 conf vol
vC2, stage 2 conf vol
vC2, stage 2 conf vol
vC3, stage 5 conf vol
vC3, stage 5 conf vol
vC3, stage 5 conf vol
vC4, stage 6 s)
F(5)
F(6, 2 stage (s)
F(6, 2 stage (s)
F(6, 3) Lane Configurations
Traffic Volume (veh/h)
Future Volume (Veh/h)
Sign Control

17 St. Andrew St. 08-24-2018 BA GROUP

ICU Level of Service

0.2 26.9% 15

Average Delay Intersection Capacity Utilization Analysis Period (min)

Approach Delay (s) Approach LOS

HCM Unsignalized Intersection Capacity Analysis 5: Kensington Ave. & St. Andrew St.

																																								A	
→	L SBT	₩	13 6		Free	%0			27	3.5	1.2	2		None				47			47	1		2	6	2														ICU Level of Service	
✓ •	NBR SBL		0 1				0.64 0.64											4			4	4.1		2.2	66	1522														ICU Lev	
←	NBT		0	0	Free	%0	0.64	0	23	0.0	1.2	0		None																									7.4	27.2%	7
1	WBR		0				0.64	0										74			74				100		SB 1		20			_	0.3		A	5.1					
-	WBL	*	21	21	Stop	%0	0.64	33	47	3.0	1.2	3						119			119	6.4		3.5	96	842	WB 1	33	33	0	842	0.04	1.0	9.5	A	9.5	A			ation	
	Movement	Lane Configurations	Traffic Volume (veh/h)	Future Volume (Veh/h)	Sign Control	Grade	Peak Hour Factor	Hourly flow rate (vph)	Pedestrians	Lane Width (m)	Walking Speed (m/s)	Percent Blockage	Right turn flare (veh)	Median type	Median storage veh)	Upstream signal (m)	pX, platoon unblocked	vC, conflicting volume	vC1, stage 1 conf vol	vC2, stage 2 conf vol	vCu, unblocked vol	tC, single (s)	tC, 2 stage (s)	tF (s)	% eeue free %	cM capacity (veh/h)	Direction, Lane #	Volume Total	Volume Left	Volume Right	cSH	Volume to Capacity	Queue Length 95th (m)	Control Delay (s)	Lane LOS	Approach Delay (s)	Approach LOS	Intersection Summary	Average Delay	Intersection Capacity Utilization	Analysis Doriod (min)

Synchro 9 Report Page 5 17 St. Andrew St. 08-24-2018 BA GROUP

HCM Unsignalized Intersection Capacity Analysis 1: Spadina Ave. & Glen Baillie PI./D'Arcy St.

FBAM 09-30-2019

FBPM 09-30-2019

FBI FBI FBI WBI WBI WBI NBI NBI NBI SBI SBI		\	†	*	-	Ļ	4	•	←	•	۶	→	*
Particulors	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
me (verlyth) 0 0 1 1 0 0 0 639 38 0 520 me (verlyth) 0 0 1 1 0 0 0 0 639 38 0 520 me (verlyth) 0 0 1 1 0 0 0 0 639 38 0 520 me (verlyth) 0 0 0 1 0 0 0 0 639 38 0 520 me (verlyth) 0 0 0 44 0.94 0.94 0.94 0.94 0.94 0.94	Lane Configurations			¥					₩			₩	
me (Verlyt) 0 0 0 1 0 0 639 38 0 520 me (Verlyt) 0 0 0 1 0 0 0 639 38 0 520 me (Verlyt) 0 0 0 1 0 0 0 0 680 0 0 680 0 0 680 0 0 0 680 0 0 0	Traffic Volume (veh/h)	0	0	, –	0	0	0	0	639	38	0	520	_
Stop Stop Stop Free Free Free Stop	Future Volume (Veh/h)	0	0	-	0	0	0	0	639	38	0	520	_
Factor 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94	Sign Control		Stop			Stop			Free			Free	
Factor 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94	Grade		%0			%0			%0			%0	
rate (vph) 0 0 1 1 0 0 0 680 40 0 0 (m) 705 936 0 0 680 40 0 0 0 (m) 705 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
(m) 705 936 (ms) 3.0 0.0 (ms) 3.0 1.2 (ms) 3.0 (Hourly flow rate (vph)	0	0	-	0	0	0	0	089	40	0	553	_
(m) 3.0 0.0 are (veh) 1.2 1.2 ctoge 49 0.89 0.89 0.89 0.89 agoverh) 1.2 agoverh 1.2 agoverh 1.2 ctoff of 1.2	Pedestrians		705			936							
eed (mks)	Lane Width (m)		3.0			0.0							
ckage 49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Walking Speed (m/s)		1.2			1.2							
are (veh) 3 age veh) 4 age veh) 9 age veh) 9 age veh) 9 age veh) 1 age veh) 2 age veh) 3 age veh) 3 age veh) 4 age veh) 4 age veh) 3 age veh) 4 age veh) 4 age veh) 3 age veh) 4 age veh) 4 age veh) 4 age veh) 4 age veh) 3 age veh) 4 age v	Percent Blockage		46			0							
Begins High state (mile) growth) growth (mile) growth) with older growth (mile) growth (mi	Right turn flare (veh)												
age veh) age veh agraciival 15.8	Median type								None			None	
gyal (m) unblocked 0.89 0.89 0.89 0.89 0.89 0.89 unblocked 1598 2914 982 1914 2895 1296 1259 1656 1 control 1 control 2 control 3 control 3 control 3 control 4 control 4 control 5 control 5 control 6 control 7 control 7 control 8 control 8 control 8 control 8 control 8 control 8 control 9 control 1 contro	Median storage veh)												
unblocked 089 089 089 089 089 089 089 089 1 confival 1598 2914 982 1914 2895 1296 1259 1 confival 2	Upstream signal (m)											19	
ng volume 1598 2914 982 1914 2895 1296 1259 1 confived 1433 2904 744 1785 2883 1296 1054 2 confived 1433 2904 744 1785 2883 1296 1054 (\$\$) 3.5 4.0 3.3 3.5 4.0 33 2.2 ee % 100 100 99 100 100 100 100 ('Vehh") 27 7 165 29 8 155 305 ane # EB I NB I NB 2 SB I SB 2 an	pX, platoon unblocked	0.89	0.89	0.89	0.89	0.89		0.89					
Loonf vol Looner vol L	vC, conflicting volume	1598	2914	982	1914	2895	1296	1259			1656		
2 conflvol (s) 7.5 6.5 6.9 7.5 6.5 6.9 4.1 (s) 7.5 6.5 6.9 7.5 6.5 6.9 4.1 (s) 7.5 6.5 6.9 6.9 (s) 7.5 6.9 8 155 305 (s) 7.5 6.9 1.0	vC1, stage 1 conf vol												
Ked vol 1433 2904 744 1785 2883 1296 1054 (S) 3.5 6.5 6.9 7.1 6.5 6.9 4.1 (S) 3.5 4.0 3.3 3.5 6.9 4.1 (eeh/h) 3.5 4.0 3.3 2.2 2.2 ee% 100 100 100 100 100 100 (veh/h) 27 7 165 28 155 305 al 18 NB 28 185 305 t 0 0 0 0 0 115 120 100 0	vC2, stage 2 conf vol												
(s) 7.5 6.5 6.9 7.5 6.5 6.9 4.1 (s) 3.5 4.0 3.3 3.5 4.0 100 100 100 99 100 100 100 100 100 99 100 100 100 100 100 100 100 100 11 453 267 369 185 11 1 453 267 369 185 11 1 0 40 0 1 11 453 267 369 185 11 1 0 40 0 1 11 51700 1700 1700 1700 129acity 0.01 0.27 0.14 0.22 0.11 11 6.5 1700 0.0 0.0 0.0 129(s) 269 0.0 0.0 0.0 0.0 0.0 0.0 129(s) 269 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	vCu, unblocked vol	1433	2904	744	1785	2883	1296	1054			1656		
(\$) 3.5 4.0 3.3 3.5 4.0 3.3 2.2 8e % 100 100 99 100 100 100 100 100 100 100	tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
ee% 100 100 33 3.5 4.0 3.3 2.2 ee% 100 100 99 100 100 100 ene# EB 1 NB 1 NB 2 SB 1 SB 2 el	IC, 2 stage (s)												
ee % 100 100 99 100 100 100 100 100 100 100	F (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
(veh/h) 27 1 65 29 8 155 305 ane # EB 1 NB 1 NB 2 SB 1 SB 2 365 365 al 1 453 267 369 185 365 369 369 185 ht 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0	on dueue free %	100	100	66	100	100	100	100			100		
ane # EB1 NB1 NB2 SB1 SB2 al	cM capacity (veh/h)	27	7	165	53	∞	155	302			395		
al 1 453 267 369 185 t 0 0 0 0 0 th 1 1 453 267 369 185 th 1 0 0 0 0 0 th 1 1 1 0 0 0 0 th 1 165 1700 1700 1700 th 5th (m) 0.1 0.0 0.0 0.0 sy(s) 26.9 0.0 0.0 0.0 OS D 0 0.0 Summary 0.0 Capacity Utilization 14% ICU Level of Service 10 or	Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2							
t 0 0 0 0 0 0 ht 1 1 0 40 0 1 1 1 100 40 0 1 1 100 1700 1700 2epacity 0.01 0.27 0.16 0.22 0.11 3th 95th (m) 0.1 0.0 0.0 0.0 0.0 y(s) 26.9 0.0 0.0 0.0 0.0 OS D 0 0.0 Summary 0.0 Capacity Utilization 15 15 16 17 18 18 18 18 18 18 18 18 18	Volume Total	-	453	267	369	185							
ht 1 0 40 0 1 146 1700 1700 1700 1700 2pacity 0.01 0.27 0.16 0.20 0.11 3th 95th (m) 0.11 0.0 0.0 0.0 0.0 0.0 3y (s) 26.9 0.0 0.0 0.0 0.0 Summary 0.0 0.0 0.0 Summary 0.0 0.0 Summary 0.0 0.0 15	Volume Left	0	0	0	0	0							
spacity 0.01 1.700	Volume Right	-	0	40	0	-							
Sapacity 0.01 0.27 0.16 0.22 0.11 jth 95th (m) 0.1 0.0 0.0 0.0 0.0 sy (s) 26.9 0.0 0.0 0.0 0.0 OS D 0.0 0.0 0.0 Summary 0.0 Capacity Utilization 2.44% ICU Level of Service roof (min) 15	SSH	165	1700	1700	1700	1700							
31h Ssth (m) 0.1 0.0 0.0 0.0 ay (s) 26.9 0.0 0.0 0.0 cleay (s) 26.9 0.0 0.0 OS D 0.0 Summary 0.0 lay 0.0 Capacity Utilization 24.4% ICU Level of Service rod (min) 15 ICU Level of Service	Volume to Capacity	0.01	0.27	0.16	0.22	0.11							
by (s) 26.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Queue Length 95th (m)	0.1	0.0	0.0	0.0	0.0							
D	Control Delay (s)	56.9	0.0	0.0	0.0	0.0							
y (s) 26.9 0.0 0.0 D 0.0 mmary 0.0 pacity Utilization 24.4.4.8 ICU Level of Service (min) 15	Lane LOS	Ω											
D 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0	Approach Delay (s)	26.9	0.0		0.0								
0.0 24.4% ICU Level of Service 15	Approach LOS	O											
0.0 24.4% ICU Level of Service 15	Intersection Summary												
24.4% ICU Level of Service	Average Delay			0.0									
	Intersection Capacity Utiliza	noite		24.4%	2	U Level o	of Service			٧			
	Analysis Period (min)			15									

17 St. Andrew St. 08-24-2018 BA GROUP

Synchro 9 Report Page 1

HCM Signalized Intersection Capacity Analysis 2: Spadina Ave. & St. Andrew St.

	4	7	€	←	→	*	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	>-		<u>, </u>	ŧ	ŧ	X	
Traffic Volume (vph)	42	32	21	618	489	35	
Future Volume (vph)	42	32	21	618	489	35	
ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Width	3.0	3.0	3.0	3.5	3.5	3.0	
Total Lost time (s)	0.9		2.0	2.0	2.0	2.0	
Lane Util. Factor	1.00		1.00	0.95	0.95	1.00	
Frpb, ped/bikes	0.91		1.00	1.00	1.00	0.10	
Flpb, ped/bikes	1.00		0.92	1.00	1.00	1.00	
	0.94		1.00	1.00	1.00	0.85	
Flt Protected	0.97		0.95	1.00	1.00	1.00	
Satd. Flow (prot)	1475		1543	3570	3570	147	
FIt Permitted	0.97		0.33	1.00	1.00	1.00	
Satd. Flow (perm)	1475		543	3570	3570	147	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	46	32	23	672	532	38	
RTOR Reduction (vph)	23	0	0	0	0	16	
Lane Group Flow (vph)	28	0	23	672	532	22	
Confl. Peds. (#/hr)	193	222	1091			1091	
Confl. Bikes (#/hr)		10				7	
Heavy Vehicles (%)	%0	%0	%0	%0	%0	%0	
Furn Type	Prot		pm+pt	NA	NA	Perm	
Protected Phases	4		2	7	9		
Permitted Phases			2			9	
Actuated Green, G (s)	31.0		46.0	46.0	33.0	33.0	
Effective Green, g (s)	32.0		47.0	47.0	34.0	34.0	
Actuated g/C Ratio	0.36		0.52	0.52	0.38	0.38	
Clearance Time (s)	7.0		0.9	0.9	0.9	0.9	
Lane Grp Cap (vph)	524		372	1864	1348	55	
	c0.04		0.01	c0.19	0.15		
v/s Ratio Perm			0.03			c0.15	
v/c Ratio	0.11		90:0	0.36	0.39	0.41	
Uniform Delay, d1	19.5		11.0	12.7	20.5	20.6	
Progression Factor	1.00		1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.4		0.3	0.5	6.0	20.9	
Delay (s)	19.9		11.4	13.2	21.3	41.5	
Level of Service	В		В	В	O	D	
Approach Delay (s)	19.9			13.1	22.7		
Approach LOS	В			В	ပ		
Intersection Summary							
UCM 2000 Control Dolay			17.6		1 0000 M	UCM 2000 Lovel of Consiso	8
HCM 2000 Volume to Capacity ratio	atio		0.29	5	NI 2000 L	avel UI Sel vice	٥
Actuated Cycle Length (s)			0.06	Sur	Sum of lost time (s)		16.0
Intersection Capacity Utilization			51.6%	10	ICU Level of Service		×.
Analysis Period (min)			15				
c Critical Lane Group							

17 St. Andrew St. 08-24-2018 BA GROUP

Synchro 9 Report Page 2

HCM Unsignalized Intersection Capacity Analysis 3: Site Access & St. Andrew St.

FBPM 09-30-2019

FBPM 09-30-2019

																																								Ą	2
•	NBR		00	8			0.92	6										72			72	6.2		3.3	66	966														f Service	
√	WBT NBL	₩	50 4		٠,		0.92 0.92	54 4						None		93		140			140	6.4		3.5	100	854														ICLL Level of Service	
<u>,</u>	WBL N		9	9				7						Ż				72			72	4.1		2.2	100	1541	NB 1	13	4	6	947	0.01	0.3	8.9	A	8.9	A		1.2	17.7%	15
<u> </u>	EBR		0	0			0.92	0																			WB 1	19	7	0	1541	0.00	0.1	6.0	⋖	6.0					
†	EBT	€Œ.	99	99	Free	%0	0.92	72						None													EB 1	72	0	0	1700	0.04	0.0	0.0		0.0				ilization	
	Movement	Lane Configurations	Traffic Volume (veh/h)	Future Volume (Veh/h)	Sign Control	Grade	Peak Hour Factor	Hourly flow rate (vph)	Pedestrians	Lane Width (m)	Walking Speed (m/s)	Percent Blockage	Right turn flare (veh)	Median type	Median storage veh)	Upstream signal (m)	pX, platoon unblocked	vC, conflicting volume	vC1, stage 1 conf vol	vC2, stage 2 conf vol	vCu, unblocked vol	tC, single (s)	tC, 2 stage (s)	tF (s)	% eeu eu bou de mee	cM capacity (veh/h)	Direction, Lane #	Volume Total	Volume Left	Volume Right	cSH	Volume to Capacity	Queue Length 95th (m)	Control Delay (s)	Lane LOS	Approach Delay (s)	Approach LOS	Intersection Summary	Average Delay	Intersection Capacity Utilization	Analysis Period (min)

17 St. Andrew St. 08-24-2018 BA GROUP

HCM Unsignalized Intersection Capacity Analysis 4: Laneway/TPA Access & St. Andrew St.

•	SBR		6 (6 0	0		5 0.85	0 11	7	.0	2	0						3 316			3 316			3.3		1 577															
→	L SBT	4	43 0	43 (Stop		<u>٥</u> .		247	3.5	1.2	20						382 478			382 478				85 100	.1 344															
(NBR SBI		1	1 4			0.85 0.85	-										229 38				6.2 7				685 34														A	
←	NBT	4	0	0	Stop			0	150	3.5	1.2	12						486			486	6.5		4.0	100	340															
•	NBL		.	-			0.85	-										256			256	7.1		3.5	100	460															
4	WBR		14	14			0	16																																ICU Level of Service	
ţ	L WBT	4	0 40		Free		0	0 47	53	3.5	1.2	4		None		115		2			2	_		2	0	_	_	2	_	_	~	7	æ	æ	S	8	S			ICU Leve	-
>	EBR WBI		0				9.0	0										176			176	4.1		2.2	100	1241	11 SB1	2 6.	1 51		551 368	_	0.1 4.8	11.6 16.8	В	11.6 16.8			6.9	%	
†	EBT EE	ı	22	22	Free		0.85 0.	26	14	3.5	1.2	—		None													WB1 NB1	63	0		1241 5		0.0	0.0		0.0				31.6%	,
<u>,</u>	EBL		0		_			0						Z				310			310	4.1		2.2	100	1009	EB 1 V	79	0				0.0	0.0		0:0				_	
	Movement	Lane Configurations	Traffic Volume (veh/h)	Future Volume (Veh/h)	Sign Control	Grade	Peak Hour Factor	Hourly flow rate (vph)	Pedestrians	Lane Width (m)	Walking Speed (m/s)	Percent Blockage	Right turn flare (veh)	Median type	Median storage veh)	Upstream signal (m)	pX, platoon unblocked	vC, conflicting volume	vC1, stage 1 conf vol	vC2, stage 2 conf vol	vCu, unblocked vol	tC, single (s)	tC, 2 stage (s)	tF (s)	p0 queue free %	cM capacity (veh/h)	Direction, Lane #	Volume Total	Volume Left	Volume Right	cSH	Volume to Capacity	Queue Length 95th (m)	Control Delay (s)	Lane LOS	Approach Delay (s)	Approach LOS	Intersection Summary	Average Delay	Intersection Capacity Utilization	formula and a second

HCM Unsignalized Intersection Capacity Analysis 5: Kensington Ave. & St. Andrew St.

FBPM 09-30-2019

FBPM 09-30-2019

																																								A	
→	SBT	€	28	28	Free	%0	08.0	32	247	3.5	1.2	20		None																										Service	
۶	SBL		22	22			0.80	28										224			224	4.1		2.2	86	1146														ICU Level of Service	
•	NBR		0	0			0.80	0																																2	
←	NBT		0	0	Free	%0	0.80	0	99	0.0	1.2	0		None																									8.4	33.3%	7
1	WBR		0	0			0.80	0										471			471	6.2		3.3	100	403	SB 1	63	28	0	1146	0.02	9.0	3.8	A	3.8					
>	WBL	je.	20	20	Stop	%0	0.80	63	224	3.0	1.2	16						381			381	6.4		3.5	88	515	WB 1	63	63	0	515	0.12	3.3	13.0	В	13.0	В			ation	
	Movement	Lane Configurations	Traffic Volume (veh/h)	Future Volume (Veh/h)	Sign Control	Grade	Peak Hour Factor	Hourly flow rate (vph)	Pedestrians	Lane Width (m)	Walking Speed (m/s)	Percent Blockage	Right turn flare (veh)	Median type	Median storage veh)	Upstream signal (m)	pX, platoon unblocked	vC, conflicting volume	vC1, stage 1 conf vol	vC2, stage 2 conf vol	vCu, unblocked vol	tC, single (s)	tC, 2 stage (s)	tF (s)	b0 dueue free %	cM capacity (veh/h)	Direction, Lane #	Volume Total	Volume Left	Volume Right	CSH	Volume to Capacity	Queue Length 95th (m)	Control Delay (s)	Lane LOS	Approach Delay (s)	Approach LOS	Intersection Summary	Average Delay	Intersection Capacity Utilization	Analysis Dariod (min)

17 St. Andrew St. 08-24-2018 BA GROUP

HCM Unsignalized Intersection Capacity Analysis 1: Spadina Ave. & Glen Baillie PI./D'Arcy St.

FTAM 09-30-2019

	1	†	>	>	Ļ	4	•	←	•	۶	→	•
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			¥.					₩\$			₩	
Traffic Volume (veh/h)	0	0	7	0	0	0	0	485	21	0	725	2
Future Volume (Veh/h)	0	0	2	0	0	0	0	485	21	0	725	2
Sign Control		Stop			Stop			Free			Free	
Grade		%0			%0			%0			%0	
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Hourly flow rate (vph)	0	0	2	0	0	0	0	533	26	0	767	2
Pedestrians		140			316							
Lane Width (m)		3.0			0.0							
Walking Speed (m/s)		1.2			1.2							
Percent Blockage		10			0							
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)											61	
pX, platoon unblocked	0.83	0.83	0.83	0.83	0.83		0.83					
vC, conflicting volume	1204	1843	540	1278	1816	610	636			902		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	832	1603	53	920	1571	610	512			902		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	100	100	100	100	100	100	100			100		
cM capacity (veh/h)	183	8	781	175	83	442	961			760		
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB2							
Volume Total	2	355	234	531	268							
Volume Left	0	0	0	0	0							
Volume Right	2	0	26	0	2							
cSH	781	1700	1700	1700	1700							
Volume to Capacity	0.00	0.21	0.14	0.31	0.16							
Queue Length 95th (m)	0.1	0.0	0.0	0.0	0:0							
Control Delay (s)	9.6	0.0	0.0	0.0	0.0							
Lane LOS	V											
Approach Delay (s)	9.6	0.0		0.0								
Approach LOS	A											
Intersection Summary												
Average Delay			00									
Intersection Capacity Utilization	tion		30.1%	2	Ulevelo	ICLI Level of Service			⋖			
Analysis Period (min)			15									

17 St. Andrew St. 08-24-2018 BA GROUP

Synchro 9 Report Page 1

HCM Signalized Intersection Capacity Analysis 2: Spadina Ave. & St. Andrew St.

FTAM 09-30-2019

Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	>		r	ŧ	ŧ	¥C.	
Traffic Volume (vph)	4	6	33	452	718	31	
Future Volume (vph)	4	6	33	452	718	31	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Width	3.0	3.0	3.0	3.5	3.5	3.0	
Total Lost time (s)	0.9		2.0	2.0	2.0	2.0	
Lane Util. Factor	1.00		1.00	0.95	0.95	1.00	
Frpb, ped/bikes	0.91		1.00	1.00	1.00	0.47	
Flpb, ped/bikes	1.00		1.00	1.00	1.00	1.00	
표	0.90		1.00	1.00	1.00	0.85	
Flt Protected	0.99		0.95	1.00	1.00	1.00	
Satd. Flow (prot)	1437		1685	3570	3570	710	
Flt Permitted	0.99		0.21	1.00	1.00	1.00	
Satd. Flow (perm)	1437		370	3570	3570	710	
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	
Adj. Flow (vph)	4	10	32	486	772	33	
RTOR Reduction (vph)	9	0	0	0	0	6	
Lane Group Flow (vph)	œ	0	35	486	772	24	
Confl. Peds. (#/hr)	32	124	196			196	
Confl. Bikes (#/hr)		10				33	
Heavy Vehicles (%)	%0	%0	%0	%0	%0	%0	
Turn Type	Prot		pm+pt	NA	Ā	Perm	
Protected Phases	4		2	2	9		
Permitted Phases			2			9	
Actuated Green, G (s)	31.0		46.0	46.0	33.0	33.0	
Effective Green, g (s)	32.0		47.0	47.0	34.0	34.0	
Actuated g/C Ratio	0.36		0.52	0.52	0.38	0.38	
Clearance Time (s)	7.0		0.9	0.9	0.9	0.9	
Lane Grp Cap (vph)	510		310	1864	1348	268	
v/s Ratio Prot	c0.01		0.01	c0.14	c0.22		
√s Ratio Perm			0.02			0.03	
v/c Ratio	0.01		0.11	0.26	0.57	60:0	
Uniform Delay, d1	18.8		12.1	11.9	22.2	18.0	
Progression Factor	1.00		1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.1		0.7	0.3	1.8	9.0	
Delay (s)	18.8		12.8	12.2	24.0	18.7	
Level of Service	В		В	В	O	В	
Approach Delay (s)	18.8			12.3	23.8		
Approach LOS	В			В	ပ		
Intersection Summary							
HCM 2000 Control Delay			10 3	Ħ	L OOOC IV	HCM 2000 Level of Service	В
HCM 2000 Volume to Capacity ratio	tyratio		0.31	-			2
Actuated Cycle Length (s)			0.06	Su	Sum of lost time (s)	ime (s)	16.0
Intersection Capacity Utilization	on		91.6%	<u></u>	ICU Level of Service	Service	В
Analysis Period (min)			12				
c Critical Lane Group							

17 St. Andrew St. 08-24-2018 BA GROUP

HCM Unsignalized Intersection Capacity Analysis 4: Laneway/TPA Access & St. Andrew St.

*	SBR		0	0			0.81	0										102			102	6.2		3.3		919															
→	SBT	4	0	0	Stop	%0	0.81	0	43	3.5	1.2	3						136			136	6.5		4.0	100	719															
۶	SBL		0	0			0.81	0										134			134	7.1		3.5	100	167															
•	NBR		0	0			0.81	0										22			22	6.2		3.3	100	982														A	
←	NBT	4	0	0	Stop	%0	0.81	0	21	3.5	1.2	2						161			161	6.5		4.0	100	969															
•	NBL		0	0			0.81	0										100			100	7.1		3.5	100	830															
4	WBR		41	41			0.81	21																																Service	
Ļ	WBT	4	21	21	Free	%0	0.81	56	70	3.5	1.2	2		None		115																								ICU Level of Service	
\	WBL		2	2			0.81	2										37			37	4.1		2.2	100	1560	SB1	0	0	0	1700	0.00	0.0	0.0	A	0.0	A			⊇	
>	EBR		0	0			0.81	0																			NB 1	0	0	0	1700	0.00	0.0	0.0	⋖	0.0	V		0.2	26.9%	
†	EBT	4	13	13	Free	%0	0.81	16	∞	3.5	1.2	-		None													WB1	79	2	21	1560	0.00	0.0	0.2	A	0.2					
4	EBL		0	0			0.81	0										120			120	4.1		2.2	100	1429	EB 1	16	0	0	1429	0.00	0.0	0.0		0.0				Ĺ	
	Movement	Lane Configurations	Traffic Volume (veh/h)	Future Volume (Veh/h)	Sign Control	Grade	Peak Hour Factor	Hourly flow rate (vph)	Pedestrians	Lane Width (m)	Walking Speed (m/s)	Percent Blockage	Right turn flare (veh)	Median type	Median storage veh)	Upstream signal (m)	pX, platoon unblocked	vC, conflicting volume	vC1, stage 1 conf vol	vC2, stage 2 conf vol	vCu, unblocked vol	tC, single (s)	tC, 2 stage (s)	tF (s)	p0 queue free %	cM capacity (veh/h)	Direction, Lane #	Volume Total	Volume Left	Volume Right	cSH	Volume to Capacity	Queue Length 95th (m)	Control Delay (s)	Lane LOS	Approach Delay (s)	Approach LOS	Intersection Summary	Average Delay	Intersection Capacity Utilization	

HCM Unsignalized Intersection Capacity Analysis 5: Kensington Ave. & St. Andrew St.

FTAM 09-30-2019

FTAM 09-30-2019

Movement	MRI	00::	FOIN	2	2		
J J J	WDL	WBK	INDI	NBK	SBL	SBT	
Lane Configurations	*					€¥	
Traffic Volume (veh/h)	21	0	0	0	13	9	
Future Volume (Veh/h)	21	0	0	0	13	9	
Sign Control	Stop		Free			Free	
Grade	%0		%0			%0	
Peak Hour Factor	0.64	0.64	0.64	0.64	0.64	0.64	
Hourly flow rate (vph)	33	0	0	0	20	6	
Pedestrians	47		23			27	
Lane Width (m)	3.0		0.0			3.5	
Walking Speed (m/s)	1.2		1.2			1.2	
Percent Blockage	e		0			2	
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	119	74			47		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	119	74			47		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)							
fF (s)	3.5	3.3			2.2		
po dueue free %	96	100			66		
cM capacity (veh/h)	842	940			1522		
Direction, Lane #	WB 1	SB 1					
Volume Total	33	29					
Volume Left	33	20					
Volume Right	0	0					
CSH	842	1522					
Volume to Capacity	0.04	0.01					
Queue Length 95th (m)	1.0	0.3					
Control Delay (s)	9.5	5.1					
Lane LOS	⋖	A					
Approach Delay (s)	6.5	5.1					
Approach LOS	V						
Intersection Summary							
Average Delay			7.4				
Intersection Capacity Utilization	zation		27.2%	⊇	ICU Level of Service	Service	A
Analysis Period (min)			7				

17 St. Andrew St. 08-24-2018 BA GROUP

HCM Unsignalized Intersection Capacity Analysis 1: Spadina Ave. & Glen Baillie PI./D'Arcy St.

0.94 None 517 517 517 0% 0.94 550 61 0.94 4.1 1653 2.2 100 396 0.94 38 None 636 636 636 636 0% 0% 0.94 0.94 0.89 1050 2.2 100 306 0.94 ICU Level of Service 0 0 1294 6.9 3.3 100 156 1294 Stop 0.94 0.94 0.0 0.0 0.0 2876 2882 184 0 1700 0.11 0.00 0.0 0.89 100 0.94 1780 367 0 0 0 1700 0.22 0.0 0.89 3.5 0.94 0.0 24.3% 15 0.89 742 266 266 0 0 1700 0.16 0.0 3.3 Stop 0.0 0.94 0.94 0.05 3.0 11.2 49 0.89 2898 4.0 0 0.27 0.0 0.0 0.0 † 0.94 0.89 1428 7.5 166 0.01 0.1 26.9 D 26.9 D 0 0 3.5 100 27 Average Delay Intersection Capacity Utilization Analysis Period (min) Direction, Lane #
Volume Total
Volume Left
CSH
Volume Right
CSH
Volume In Sink (m)
Queue Length 95ink (m)
Lane LOS Lane Configurations
Traffic Volume (veh/h)
Sign Control
Grade
Peak Huur Factor
Huurly flow rate (vph)
Pedestrians
Lane Width (m)
Walking Speed (m's)
Percent Blockage
Right turn flare (veh) Maddan storage veh)
Upstream signal (m)
Dp., platon unblocked
VC, conflicting volume
vC1, stage 1 conf vol
vC2, stage 2 conf vol
vC3, unblocked vol
(C, single (s)
IC, Single (s)
IF (s)
On queue free %
CM capacity (vehh) Approach Delay (s) Approach LOS Median type

17 St. Andrew St. 08:24-2018 BA GROUP

Synchro 9 Report Page 1

HCM Signalized Intersection Capacity Analysis 2: Spadina Ave. & St. Andrew St.

FTPM 09-30-2019

FTPM 09-30-2019

EBI EBI SI		NBT SB1 144		
(c) (s) (s) (s) (s) (s) (s) (s) (s) (s) (s	T 1 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0			
(vph) 38 3.0 3 3.0 5 6.0 10 1.00 19 1.00 0.91 1.472 0.97 1.472 0.97 1.472 0.97 1.472 0.97 (vph) 52 (vph) 52 (vph) 52 (vph) 52 (vph) 52 (vph) 52 (vph) 52 (vph) 62 193 20 0 0.36 0	1 1 1 1 0 1 0 1 0 1 E 4 4 0			
(vph) 38 1900 19 1000 19 10	f 1101010 5 E E 440			
(vph) 21 (vp	1 1 1 1 E 4 4 0			
(vph) 21 (vph) 22 (vph) 22 (vph) 21 (vph) 21 (vph) 21 (vph) 21 (vph) 21 (vph) 22 (vph) 22 (vph) 22 (vph) 23 (vph) 22 (vph) 23 (vph) 24 (vph) 24 (vph) 25 (vph) 25 (vph) 26 (vph) 27 (vp		011118180		
(c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d				
(vph) 21 (vph) 23 (vph) 52 (vph) 52 (vph) 52 (vph) 52 (vph) 52 (vph) 53 (vph) 53 (vph) 53 (vph) 63 (vph) 64 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4				
(vph) 21 (vp	10 10 10 1 E			
(vph) 21 (vph) 22 (vph) 21 (vph) 22 (vph) 22 (vph) 22 (vph) 22 (vph) 23 (vph) 23 (vph) 24 (vp				
(vph) 52 (vph) 52 (vph) 52 (vph) 52 (vph) 52 (vph) 52 (vph) 62 (vph)	_ m 4 4 4 0			
(c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	T			
(vph) 21 (vph) 22 (vph) 22 (vph) 22 (vph) 22 (vph) 25 (vph) 25 (vph) 25 (vph) 26 (vph) 27 (vp	pm pm 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		- 1	
(vph) 21 (vph) 22 (vph) 22 (vph) 25 (vph) 22 (vph) 25 (vph) 22 (vph) 23 (vph) 24 (vp	_ mg			
(%) PHF 0.92 ((%) (%) 52 (%) (%) 193 (%) (%) 0% (%) 0% es 4 es 4 es 4 es 4 (%) 32.0 (%) 33.0 (%) 32.0 (%) 32.0 (T md 4 4 0 0			
(yc) (yc) (yc) (yc) (yc) (yc) (yc) (yc)	mq 4 4 0			
21 27 28 29 30 30 31 31 31 31 32 32 32 32 32 32 32 32 32 32 32 32 32	Ind 4 4 0		——————————————————————————————————————	
52 0% Proi 4 4 310 32.0 0.36 52.3 0.04 0.10 1.00 0.4 1.98 B B	m 4 4 0			
193 0% Prof 4 4 31.0 32.0 0.36 7.0 523 60.04 19.4 1.00 0.4 19.8 B	mq 4 4 0 0			
00% 4 4 4 4 4 4 4 4 4	pm 4		4	
0% Prot Prot 31.0 32.0 32.0 52.3 52.3 52.0 6.04 1.00 6.10 1.9 8 8 8 8 8 8 8 9 9 8 8 8 8 8 8 8 8 8 8	pm 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		<u> </u>	
	pm+pt 5 2 2 46.0 47.0 0.52 6.0		ш.	
	5 2 46.0 47.0 0.52 6.0			
	2 46.0 47.0 0.52 6.0			
	46.0 47.0 0.52 6.0			
	47.0 0.52 6.0			
	0.52			
5	0.9		0	
3				
	372		55	
	0.00	c0.19 c0.15		
	0.05		0.14	
	0.05	0.36 0.39		
	11.0			
	1.00			
	0.3		19.0	
	11.3	13.2 21.3	39.4	
	В	В	O	
		13.1 22.5		
Intersection Summary		В		
HCIMI 2000 COLIII OI DEIAV	17.5	HCM 200	HCM 2000 Level of Service	В
HCM 2000 Volume to Capacity ratio	0.28			
Actuated Cycle Length (s)	0.06	Sum of lo	Sum of lost time (s)	16.0
Intersection Capacity Utilization	51.2%	ICU Leve	ICU Level of Service	A
Analysis Period (min)	15			
c Critical Lane Group				

17 St. Andrew St. 08-24-2018 BA GROUP

HCM Unsignalized Intersection Capacity Analysis 4: Laneway/TPA Access & St. Andrew St.

Movement EBI EBI EBI WBI WBI NBI ABI AB		•	†	~	>	ļ	4	•	←	•	۶	→	•
1	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
None 1 36 14 1 0 2 43 0 0 0 0 0 0 0 0 0	Lane Configurations		4			4			4			4	
1,	Traffic Volume (veh/h)	0	77	0	-	36	14	-	0	2	43	0	6
Free Free Stop	Future Volume (Veh/h)	0	22	0	_	36	14	-	0	2	43	0	6
0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85	Sign Control		Free			Free			Stop			Stop	
0.85	Grade		%0			%0			%0			%0	
0	Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
14 53 150 247 15 12 12 12 12 1	Hourly flow rate (vph)	0	56	0	-	42	16	-	0	2	21	0	1
1.2 1.2	Pedestrians		14			23			150			247	
1.2 1.2	Lane Width (m)		3.5			3.5			3.5			3.5	
None	Walking Speed (m/s)		1.2			1.2			1.2			1.2	
None None 115 115 116 22 22 22 22 22 22 22 22 2	Percent Blockage		-			4			12			20	
Mone None None 115 ad 305 176 253 483 229 380 475 a 305 176 253 483 229 380 475 a 176 253 483 229 380 475 a 177 6.5 6.2 7.1 6.5 a 1014 1241 590 388 b 1014 1241 590 388 c 101 0.00 0.00 0.01 0.17 c 0 0 1 11.1 16.7 c 0 0 0.1 16.7 c 0 0 0 0 0.1 16.7 c 0 0 0 0 0 0.1 16.7 c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Right turn flare (veh)												
e 305 176 253 483 229 380 475 e 305 176 253 483 229 380 475 l 305 176 253 483 229 380 475 4.1 4.1 6.5 6.2 7.1 6.5 100 100 100 100 100 100 100 85 100 1014 1241 590 368 m) 0.00 0.00 0.1 11 6.7 m) 0.00 0.01 0.17 m) 0.00 0.01 11.1 16.7 y 7 7 7 1 6.5 6.2 7.1 6.5 1.24 48 2 34.0 3.3 3.5 4.0 102 1 1 51 51 103 1 1 51 104 124 1 590 368 m) 0.00 0.01 0.17 m) 0.00 0.01 1.1 16.7 y 7 7 7 8 10 1 1.1 16.7 y 7 7 1 8 1 6.5 6.2 7.1 6.5 1.24 1 8.5 34.0 3.3 3.5 4.0 1.24 1 8.5 34.0 3.4 3.5 3.5 4.0 1.24 1 8.1 6.7 1.24 1 16.7 1.25 2.2 34.1 685 34.2 34.5 1.25 34.0 3.3 3.5 4.0 1.24 1 1 51 1.24 1 1 51 1.24 1 1 51 1.24 1 1 51 1.24 1 1 51 1.24 1 1 51 1.24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Median type		None			None							
115 115 115 116 115 116 116 1176	Median storage veh)												
e 305 176 253 483 229 380 475 1	Upstream signal (m)					115							
e 305 176 253 483 229 380 475 1 305 176 253 483 229 380 475 4.1 4.1 4.1 7.1 6.5 6.2 7.1 6.5 100 101 1241 590 388 m) 0.00 0.00 0.01 0.17 m) 0.00 0.01 11.1 16.7 m) 0.00 0.01 11.1 16.7 y 1.01itzation 31.6% ICU Level of Service A	pX, platoon unblocked												
176 253 483 229 380 475 411 4.1 7.1 6.5 6.2 7.1 6.5 6.5 7.1 6.5 6.5 7.1 6.5 6.5 7.1 6.5 6.5 7.1 6.5 6.5 7.1 6.5 6.5 7.1 6.5 6.5 7.1 6.5 6.5 7.1 6.5 6.5 7.1 6.5 6.5 7.1 6.5 6.5 7.1 6.5 6.5 7.1 6.5	vC, conflicting volume	305			176			253	483	229	380	475	311
176 253 483 229 380 475 411 411 114 412 212 22 22	vC1, stage 1 conf vol												
305 176 253 483 229 380 475 41 176 253 483 229 380 475 41 176 25 42 7.1 6.5 6.2 7.1 6.2 6.2 7.1 6.2 7.	vC2, stage 2 conf vol												
A1	vCu, unblocked vol	305			176			253	483	229	380	475	311
22 22 3.5 4.0 3.3 3.5 4.0 100 100 100 101 101 1014 1241 590 368 6.00 0.01 11.1 16.7 8 C.00 0.01 16.0 0.01 16	IC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
22 22 3.5 4.0 3.3 3.5 4.0 100 100 85 100 101 1014 1241 8.5 4.0 100 100 85 140 1014 1241 8.5 4.0 100 100 85 140 1014 1241 8.5 4.0 100 101 1.1 16.7 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	IC, 2 stage (s)												
100	F (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
1014 1241 462 341 685 342 345 34	oo dneue free %	100			100			100	100	100	82	100	86
EB1 WB1 NB1 SB1 26 59 3 62 0 1 1 1 51 0 16 2 11 1014 1241 590 368 0.00 0.00 0.01 0.17 m) 0.00 0.1 11.1 16.7 A B C 0.0 0.1 11.1 16.7 A B C 0.0 0.1 11.1 16.7 A B C 0.0 1.1 11.5 16.7 A B C 0.0 1.1 11.1 16.7 A B C 1.0 11.2 16.7 A B C 1.0 11.1 16.7	cM capacity (veh/h)	1014			1241			462	341	982	342	345	280
26 59 3 62 0 1 1 1 51 0 16 2 11 1014 1241 590 368 0.00 0.00 0.01 0.17 0.0 0.1 11.1 16.7 0.0 0.1 11.1 16.7 0.0 0.1 11.1 16.7 0.0 0.1 11.1 16.7 0.0 0.1 11.1 16.7 0.1 16.7 0.1 16.7 0.1 16.7 0.1 16.7 0.1 16.7 0.1 16.7 0.1 16.7 0.1	Direction, Lane #	EB 1	WB1	NB 1	SB 1								
0 1 1 51 0 1 24 24 59 368 0.00 0.00 0.01 0.17 m) 0.0 0.1 11.1 16.7 A B C 0.0 0.1 11.1 16.7 B C y 7.2 Vullization 31.6% ICU Level of Service	Volume Total	26	69	3	62								
0 16 2 11 1014 1241 590 368 0.00 0.00 0.01 0.17 m) 0.00 0.01 1.11 16.7 0.0 0.1 11.1 16.7 0.0 0.1 11.1 16.7 B C y 7 72 1	Volume Left	0	-	-	21								
1014 1241 590 368 0.00 0.00 0.01 0.17 0.0 0.0 0.1 14.8 0.0 0.1 11.1 16.7 A B C 0.0 0.1 11.1 16.7 B C Y 7.2 Vullization 31.6% ICU Level of Service 15	Volume Right	0	16	2	=								
m) 0.00 0.00 0.01 0.17 0.00 0.1 1.1 16.7 0.0 0.1 1.1 16.7 0.0 0.1 1.1 16.7 y 7 7 7 7 7 7 7 10tilization 31.6% ICU Level of Service 15.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	SSH	1014	1241	200	368								
m) 00 00 0.1 4.8 00 0.1 11.1 16.7 A B C 0.0 0.1 11.1 16.7 B C y 7.2 Vulitzation 31.6% ICU Level of Service	Volume to Capacity	0.00	0.00	0.01	0.17								
0.0 0.1 11.1 16.7 A B C 0.0 0.1 11.1 16.7 B C 1.1.2 16.7 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	Queue Length 95th (m)	0.0	0.0	0.1	4.8								
A B C 0.0 0.1 11.1 16.7 B C y 7.2 Utilization 31.6% ICU Level of Service 15.00	Control Delay (s)	0:0	0.1	11.1	16.7								
0.0 0.1 11.1 16.7 B C 1.2	-ane LOS		A	В	ပ								
y 7.2 CU Level of Service 15 1.6% ICU Level of Service 15 1.6% ICU Level of Service 16 15 15 15 15 15 15 15 15 15 15 15 15 15	Approach Delay (s)	0.0	0.1	11.1	16.7								
7.2 31.6% ICU Level of Service 15	Approach LOS			В	O								
7.2 31.6% ICU Level of Service 15	Intersection Summary												
31.6% ICU Level of Service 15	Average Delay			7.2									
15	Intersection Capacity Utilization	L		31.6%	2	U Level o	f Service			⋖			
	Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis 5: Kensington Ave. & St. Andrew St.

FTPM 09-30-2019

FTPM 09-30-2019

ane Configurations	MDM	MDM		MON	2	SBT	
	-				2	•	
raffic Volume (veh/h)	46	0	0	0	22	28	
Future Volume (Veh/h)	46	0	0	0	22	28	
Sign Control	Stop		Free			Free	
Grade	%0	0	%0	0	0	%0 %0	
Peak Hour Factor	0.80	0.80	0.80	0.80	0.80	0.80	
Hourly flow rate (vph)	82 58	0	0 ;	0	58	35	
Pedestrians	774		99			247	
-ane Width (m)	3.0		0.0			3.5	
Nalking Speed (m/s)	1.2		1.2			1.2	
Percent Blockage	16		0			20	
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Ubstream signal (m)							
nX. platnon unblocked							
.C. confliction volume	381	471			224		
vC1, stage 1 conf vol	5				i		
vC2, stage 2 conf vol							
vCu, unblocked vol	381	471			224		
C, single (s)	6.4	6.2			4.1		
.C, 2 stage (s)							
IF (s)	3.5	3.3			2.2		
% eauf enen po	68	100			86		
cM capacity (veh/h)	515	403			1146		
Direction, Lane #	WB 1	SB 1					
Volume Total	28	63					
/olume Left	28	28					
/olume Right	0	0					
SSH	515	1146					
Volume to Capacity	0.11	0.02					
Queue Length 95th (m)	3.0	9.0					
Control Delay (s)	12.9	3.8					
Lane LOS	B	V					
Approach Delay (s)	12.9	3.8					
Approach LOS	В						
Intersection Summary							
Average Delay			8.1				
Intersection Capacity Utilization	tion		33.3%	2	U Level o	ICU Level of Service A	
Analysis Period (min)			15				

17 St. Andrew St. 08-24-2018 BA GROUP